- add image import script for Pechgraben images

This commit is contained in:
Arno Kaimbacher 2022-03-11 16:10:52 +01:00
parent dc58b7235f
commit d33e9d2b55
9 changed files with 503 additions and 112 deletions

265
db/models.py Normal file
View File

@ -0,0 +1,265 @@
'''
Tutorial link: https://docs.sqlalchemy.org/en/latest/orm/tutorial.html
Sqlalchemy version: 1.4.31
Python version: 3.10
'''
#!/usr/bin/python# -*- coding: utf-8 -*-
from datetime import datetime
# from config import db, ma
import os
from sqlalchemy import (Column, Integer, Sequence,
String, DateTime, ForeignKey, Numeric, SmallInteger, create_engine)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import session, relationship, sessionmaker
#from marshmallow import Schema
from marshmallow_sqlalchemy import SQLAlchemySchema, SQLAlchemyAutoSchema
from marshmallow import fields
from dotenv import load_dotenv, find_dotenv
# from db.pg_models import create_pg_session
# import sqlalchemy.orm.session
Base = declarative_base()
def create_pg_session() -> sessionmaker:
""" create postgres db session """
load_dotenv(find_dotenv())
dbschema = ''
db_user = os.environ.get("POSTGIS_DBUSER")
db_password = os.environ.get("POSTGIS_DBPASSWORD")
db_url = os.environ.get("POSTGIS_DBURL")
engine = create_engine(
"postgresql+psycopg2://" + db_user + ":" + db_password + "@" + db_url,
connect_args={'options': f'-csearch_path={dbschema}'},
isolation_level="READ UNCOMMITTED")
session_maker = sessionmaker(bind=engine)
_session = session_maker()
# Base.metadata.create_all(engine)
return _session
class Platform(Base):
""" Platform class """
__tablename__ = 'platform'
__table_args__ = {"schema": "gba"}
id = Column('platform_id', Integer, primary_key=True)
identifier = Column('identifier', String)
sta_identifier = Column('sta_identifier', String)
name = Column('name', String)
# datasets = relationship('Dataset')
datasets = relationship('Dataset', back_populates="platform", lazy=True)
def __repr__(self):
return f'Platform {self.name}'
class Phenomenon(Base):
""" phenomenon class """
__tablename__ = 'phenomenon'
__table_args__ = {"schema": "gba"}
id = Column('phenomenon_id', Integer, primary_key=True)
name = Column('name', String)
sta_identifier = Column('sta_identifier', String)
# datasets = relationship('Dataset')
datasets = relationship('Dataset', back_populates="phenomenon", lazy=True)
def __repr__(self):
return f'Phenomenon {self.name}'
class Procedure(Base):
""" procedure class """
__tablename__ = 'procedure'
__table_args__ = {"schema": "gba"}
id = Column('procedure_id', Integer, primary_key=True)
name = Column('name', String)
sta_identifier = Column('sta_identifier', String)
# datasets = relationship('Dataset')
datasets = relationship('Dataset', back_populates="procedure", lazy=True)
def __repr__(self):
return f'Procedure {self.name}'
class Dataset(Base):
""" dataset class """
__tablename__ = 'dataset'
__table_args__ = {"schema": "gba"}
id = Column('dataset_id', Integer, primary_key=True)
name = Column('name', String)
is_published = Column('is_published', SmallInteger)
is_hidden = Column('is_hidden', SmallInteger)
dataset_type = Column('dataset_type', String)
observation_type = Column('observation_type', String)
value_type = Column('value_type', String)
last_time = Column('last_time', DateTime)
last_value = Column('last_value', Numeric(20, 10))
fk_last_observation_id = Column(
'fk_last_observation_id',
Integer
)
# last_observation = relationship(
# "Observation", foreign_keys=[fk_last_observation_id])
first_time = Column('first_time', DateTime)
first_value = Column('first_value', Numeric(20, 10))
fk_first_observation_id = Column(
'fk_first_observation_id',
Integer
)
# first_observation = relationship("Observation", foreign_keys=[
# fk_first_observation_id])
observations = relationship(
'Observation', back_populates='dataset', lazy=True)
fk_phenomenon_id = Column(
'fk_phenomenon_id', Integer, ForeignKey('gba.phenomenon.phenomenon_id'), nullable=False)
# phenomenon = relationship("Phenomenon", lazy="joined", foreign_keys=[fk_phenomenon_id])
phenomenon = relationship(
"Phenomenon", back_populates="datasets", lazy="joined")
fk_platform_id = Column('fk_platform_id', Integer, ForeignKey(
'gba.platform.platform_id'), nullable=True)
platform = relationship(
"Platform", back_populates="datasets", lazy="joined")
fk_format_id = Column('fk_format_id', Integer, ForeignKey(
'gba.format.format_id'), nullable=True)
format = relationship(
"Format", back_populates="datasets", lazy="joined")
fk_procedure_id = Column('fk_procedure_id', Integer, ForeignKey(
'gba.procedure.procedure_id'), nullable=False)
# procedure = relationship("Procedure", lazy="joined")
procedure = relationship(
"Procedure", back_populates="datasets", lazy="joined")
def new_id_factory():
''' test '''
dbschema = ''
db_user = os.environ.get("POSTGIS_DBUSER")
db_password = os.environ.get("POSTGIS_DBPASSWORD")
db_url = os.environ.get("POSTGIS_DBURL")
engine = create_engine(
"postgresql+psycopg2://" + db_user + ":" + db_password + "@" + db_url,
connect_args={'options': f'-csearch_path={dbschema}'},
isolation_level="READ UNCOMMITTED")
result = engine.execute('SELECT MAX(observation_id) FROM gba.observation')
mytable_max_id = result.first().max
if mytable_max_id is None:
mytable_max_id = 0
mytable_max_id += 1
return mytable_max_id
observation_seq = Sequence('observation_seq', schema="gba") # define sequence explicitly
class Observation(Base):
""" observation class """
__tablename__ = 'observation'
__table_args__ = {"schema": "gba"}
# id = Column('observation_id', Integer, primary_key=True)
id = Column('observation_id',
Integer,
observation_seq,
primary_key=True,
server_default=observation_seq.next_value())
name = Column('name', String)
value_type = Column('value_type', String, default="quantity")
# pitch = Column('PITCH', String)
# roll = Column('ROLL', String)
sampling_time_start = Column('sampling_time_start', DateTime)
sampling_time_end = Column('sampling_time_end', DateTime)
result_time = Column('result_time', DateTime)
sta_identifier = Column('sta_identifier', String)
value_identifier = Column('value_identifier', String)
value_quantity = Column('value_quantity', Numeric(20, 10))
value_text = Column('value_text', String)
fk_dataset_id = Column(Integer, ForeignKey(
'gba.dataset.dataset_id'), nullable=False)
dataset = relationship("Dataset", back_populates="observations")
class ObservationSchema(SQLAlchemySchema):
""" Platform class """
DateTime = fields.DateTime(attribute='result_time') # Or vice-versa
# value_quantity = fields.Integer(attribute='Value')
# id = fields.Integer(attribute='id')
Value = fields.Integer(attribute='value_quantity')
id = fields.Integer(attribute='value_identifier')
# sta_identifier= fields.String(default=uuid.uuid4()),
class Meta:
""" Platform class """
model = Observation
include_relationships = True
load_instance = True
#pg_session: session = create_pg_session()
sqla_session: session = create_pg_session()
class Format(Base):
""" Format class """
__tablename__ = 'format'
__table_args__ = {"schema": "gba"}
id = Column('format_id', Integer, primary_key=True)
definition = Column('definition', String(255), index=True)
datasets = relationship('Dataset', back_populates="format", lazy=True)
class Person(Base):
""" Platform class """
__tablename__ = 'accounts'
__table_args__ = {"schema": "gba"}
person_id = Column('id', Integer, primary_key=True)
lname = Column('last_name', String(255), index=True)
fname = Column('first_name', String(255))
login = Column(String(255))
timestamp = Column('updated_at', DateTime, default=datetime.utcnow,
onupdate=datetime.utcnow)
def __repr__(self):
return f"<User(name='{self.login}', lastname='{self.lname}')>"
class PersonSchema(SQLAlchemyAutoSchema):
""" Platform class """
class Meta:
""" Platform class """
model = Person
include_relationships = True
load_instance = True
#pg_session: session = create_pg_session()
sqla_session: session = create_pg_session()
def create_db():
# db_url = 'sqlite:///db.sqlite'
# engine = create_engine(db_url, echo = True )
# Base.metadata.drop_all(bind=engine)
# Base.metadata.create_all(engine)
""" create postgres db session """
load_dotenv("D:\\Software\\geomon\\.env")
dbschema = ''
db_user = os.environ.get("POSTGIS_DBUSER")
db_password = os.environ.get("POSTGIS_DBPASSWORD")
db_url = os.environ.get("POSTGIS_DBURL")
engine = create_engine(
"postgresql+psycopg2://" + db_user + ":" + db_password + "@" + db_url,
connect_args={'options': f'-csearch_path={dbschema}'},
isolation_level="READ UNCOMMITTED", echo=True)
# session_maker = sessionmaker(bind=engine)
# session = session_maker()
Base.metadata.drop_all(bind=engine)
# Base.metadata.create_all(engine)
if __name__ == "__main__":
create_db()

View File

@ -20,7 +20,7 @@ from dotenv import load_dotenv, find_dotenv
from sqlalchemy.orm import session
from sqlalchemy import func, asc, desc
# from db.pg_models import Platform
from gschliefgraben_glasfaser.models import (
from db.models import (
ObservationSchema, Person, PersonSchema, Observation,
create_pg_session, Dataset, Procedure, Phenomenon, Platform)
from gschliefgraben_glasfaser.my_api import MyApi
@ -206,7 +206,7 @@ def create_observation(observation_json: ObservationSchema, db_session,
schema = ObservationSchema()
# deserialize to python object
new_observation: Observation = schema.load(observation_json)
new_observation.id = max_id
# new_observation.id = max_id
new_observation.sta_identifier = str(uuid.uuid4())
new_observation.sampling_time_start = new_observation.result_time
new_observation.sampling_time_end = new_observation.result_time
@ -223,7 +223,7 @@ def create_observation(observation_json: ObservationSchema, db_session,
return max_id
# Otherwise, nope, person exists already
else:
print(409, f'Observation {ob_id} exists already')
# print(409, f'Observation {ob_id} exists already')
return max_id
@ -269,6 +269,6 @@ def create(person_json: PersonSchema):
if __name__ == "__main__":
load_dotenv(find_dotenv())
print('sensors: {}'.format(os.environ.get(
'GLASFASER_GSCHLIEFGRABEN_SENSORS', [])))
sensor_list1 = os.environ.get('GLASFASER_GSCHLIEFGRABEN_SENSORS', [])
print(f'sensors: {sensor_list1} .')
main()

View File

@ -13,7 +13,7 @@ from dotenv import load_dotenv, find_dotenv
from sqlalchemy.orm import session
from sqlalchemy import func, asc, desc
# from db.pg_models import Platform
from gschliefgraben_glasfaser.models import (
from db.models import (
ObservationSchema, Observation, create_pg_session,
Dataset, Procedure, Phenomenon, Platform)
from gschliefgraben_glasfaser.my_api import MyApi
@ -149,7 +149,7 @@ def create_observation(observation_json: ObservationSchema, db_session, max_id,
schema = ObservationSchema()
# deserialize to python object
new_observation: Observation = schema.load(observation_json)
new_observation.id = max_id
# new_observation.id = max_id
new_observation.sta_identifier = str(uuid.uuid4())
new_observation.sampling_time_start = new_observation.result_time
new_observation.sampling_time_end = new_observation.result_time
@ -172,6 +172,6 @@ def create_observation(observation_json: ObservationSchema, db_session, max_id,
if __name__ == "__main__":
load_dotenv(find_dotenv())
print('sensors: {}'.format(os.environ.get(
'GLASFASER_GSCHLIEFGRABEN_SENSORS', [])))
sensor_list1 = os.environ.get('GLASFASER_GSCHLIEFGRABEN_SENSORS', [])
print(f'sensors: {sensor_list1} .')
main()

View File

@ -42,3 +42,20 @@ https://medium.com/dataexplorations/sqlalchemy-orm-a-more-pythonic-way-of-intera
https://stackoverflow.com/questions/51737548/how-to-set-primary-key-auto-increment-in-sqlalchemy-orm
<sml:output name=\"HumanVisualPerception\">
<swe:Category definition=\"http://www.opengis.net/def/property/humanVisualPerception\">
<swe:codeSpace xlink:href=\"NOT_DEFINED\"/>
</swe:Category>
</sml:output>
<sml:output name=\"Image\">
<swe:DataRecord>
<swe:field name=\"manuel_observation\">
<swe:Text definition=\"manuel_observation\"/>
</swe:field>
</swe:DataRecord>
</sml:output>
<swe:field name="wmo_weather_code"><swe:Category definition="https://www.nodc.noaa.gov/archive/arc0021/0002199/1.1/data/0-data/HTML/WMO-CODE/WMO4677.HTM"><swe:codeSpace xlink:href="NOT_DEFINED"/></swe:Category></swe:field> -->

View File

@ -10,6 +10,12 @@
<gml:identifier codeSpace=\"uniqueID\">{procedure_identifier}</gml:identifier>
<sml:identification>
<sml:IdentifierList>
<sml:identifier>
<sml:Term definition=\"urn:ogc:def:identifier:OGC:1.0:longName\">
<sml:label>longName</sml:label>
<sml:value>{procedure_name}</sml:value>
</sml:Term>
</sml:identifier>
<sml:identifier>
<sml:Term definition=\"urn:ogc:def:identifier:OGC:1.0:shortName\">
<sml:label>shortName</sml:label>
@ -28,6 +34,20 @@
</sml:capability>
</sml:CapabilityList>
</sml:capabilities>
<sml:capabilities name=\"metadata\">
<sml:CapabilityList> <!-- status indicates, whether sensor is insitu (true) or remote (false) -->
<sml:capability name=\"insitu\">
<swe:Boolean definition=\"insitu\">
<swe:value>true</swe:value>
</swe:Boolean>
</sml:capability> <!-- status indicates, whether sensor is mobile (true) or fixed/stationary (false) -->
<sml:capability name=\"mobile\">
<swe:Boolean definition=\"mobile\">
<swe:value>false</swe:value>
</swe:Boolean>
</sml:capability>
</sml:CapabilityList>
</sml:capabilities>
<sml:featuresOfInterest>
<sml:FeatureList definition=\"http://www.opengis.net/def/featureOfInterest/identifier\">
<swe:label>featuresOfInterest</swe:label>
@ -48,10 +68,10 @@
</sml:featuresOfInterest>
<sml:outputs>
<sml:OutputList>
<sml:output name=\"Image\">
<sml:output name=\"HumanVisualPerception\">
<swe:DataRecord>
<swe:field name=\"manuel_observation\">
<swe:Text definition=\"manuel_observation\"/>
<swe:field name=\"HumanVisualPerception\">
<swe:Text definition=\"HumanVisualPerception\"/>
</swe:field>
</swe:DataRecord>
</sml:output>
@ -61,19 +81,19 @@
<swe:Vector referenceFrame=\"urn:ogc:def:crs:EPSG::4326\">
<swe:coordinate name=\"easting\">
<swe:Quantity axisID=\"x\">
<swe:uom code=\"degree\" />
<swe:uom code=\"degree\"/>
<swe:value>{cord_x}</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name=\"northing\">
<swe:Quantity axisID=\"y\">
<swe:uom code=\"degree\" />
<swe:uom code=\"degree\"/>
<swe:value>{cord_y}</swe:value>
</swe:Quantity>
</swe:coordinate>
<swe:coordinate name=\"altitude\">
<swe:Quantity axisID=\"z\">
<swe:uom code=\"m\" />
<swe:uom code=\"m\"/>
<swe:value>{height}</swe:value>
</swe:Quantity>
</swe:coordinate>

View File

@ -111,8 +111,8 @@
<swes:observableProperty>http://www.opengis.net/def/property/humanVisualPerception</swes:observableProperty>
<swes:metadata>
<sos:SosInsertionMetadata>
<sos:observationType>http://www.opengis.net/def/observationType/OGCOM/2.0/OM_CategoryObservation</sos:observationType>
<sos:featureOfInterestType>http://www.opengis.net/def/samplingFeatureType/OGCOM/2.0/SF_SamplingPoint</sos:featureOfInterestType>
<sos:observationType>http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation</sos:observationType>
<sos:featureOfInterestType>http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/SF_SamplingPoint</sos:featureOfInterestType>
</sos:SosInsertionMetadata>
</swes:metadata>
</swes:InsertSensor>

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,165 @@
'''
Sqlalchemy version: 1.2.15
Python version: 3.7
'''
import os
import uuid
from datetime import datetime
from sqlalchemy.orm import session
from sqlalchemy import asc, desc
from exif import Image
from db.models import (
create_pg_session, Observation,
Dataset, Procedure, Phenomenon, Platform, Format)
def main():
''' main method '''
pg_session: session = create_pg_session()
platform_sta_identifier = "pechgraben_images"
sensor = "camera2"
pg_query = pg_session.query(Dataset) \
.join(Procedure) \
.join(Phenomenon) \
.filter(Procedure.sta_identifier == sensor.lower())
visual_perception_dataset: Dataset = pg_query.filter(
Phenomenon.sta_identifier == "HumanVisualPerception").first()
if not visual_perception_dataset:
print("Sensor " + sensor + " ist noch nicht angelegt!")
exit()
if not visual_perception_dataset.is_published:
visual_perception_dataset.is_published = 1
visual_perception_dataset.is_hidden = 0
visual_perception_dataset.dataset_type = "timeseries"
visual_perception_dataset.observation_type = "simple"
visual_perception_dataset.value_type = "text"
pg_session.commit()
platform_exists: bool = pg_session.query(Platform.id).filter_by(
sta_identifier=platform_sta_identifier).scalar() is not None
if platform_exists:
sensor_platform = pg_session.query(Platform.id) \
.filter(Platform.sta_identifier == platform_sta_identifier) \
.first()
visual_perception_dataset.fk_platform_id = sensor_platform.id
format_exists: bool = pg_session.query(Format.id).filter_by(
definition="http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TextObservation"
).scalar() is not None
if format_exists:
sensor_format = pg_session.query(Format.id) \
.filter(Format.definition == "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_TextObservation") \
.first()
visual_perception_dataset.fk_format_id = sensor_format.id
# import all the images for the given sensor names
import_images(visual_perception_dataset, pg_session)
# save first and last values of all the observations
first_observation: Observation = pg_session.query(Observation) \
.filter(Observation.fk_dataset_id == visual_perception_dataset.id) \
.order_by(asc('sampling_time_start')) \
.first()
if first_observation is not None:
visual_perception_dataset.first_time = first_observation.sampling_time_start
# visual_perception_dataset.first_value = first_observation.value_quantity
visual_perception_dataset.fk_first_observation_id = first_observation.id
last_observation: Observation = pg_session.query(Observation) \
.filter(Observation.fk_dataset_id == visual_perception_dataset.id) \
.order_by(desc('sampling_time_start')) \
.first()
if last_observation is not None:
visual_perception_dataset.last_time = last_observation.sampling_time_start
# visual_perception_dataset.last_value = last_observation.value_quantity
visual_perception_dataset.fk_last_observation_id = last_observation.id
pg_session.commit()
pg_session.close()
def import_images(dataset: Dataset, pg_session):
''' main method '''
folder_path = 'C:/Users/kaiarn/Documents/Fotos'
# img_filename = '_DSC9548.JPG'
# img_path = f'{folder_path}/{img_filename}'
# Get the list of image files in the directory that exifread supports
directory = os.listdir(folder_path)
for file_name in directory:
if file_name.endswith(('jpg', 'JPG', 'png', 'PNG', 'tiff', 'TIFF')):
file_path = os.path.join(folder_path, file_name)
# print(file_path)
img_file = open(file_path, 'rb')
img: Image = Image(img_file)
if img.has_exif:
info = f" has the EXIF {img.exif_version}"
else:
info = "does not contain any EXIF information"
# print(f"Image {img_file.name}: {info}")
# Original datetime that image was taken (photographed)
# print(f'DateTime (Original): {img.get("datetime_original")}')
datetime_original = img.get("datetime_original")
# Grab the date
date_obj = datetime.strptime(
datetime_original, '%Y:%m:%d %H:%M:%S')
# print(date_obj)
create_observation(dataset, date_obj, file_name)
pg_session.commit()
def create_observation(dataset: Dataset, datetime_original, file_name):
"""
This function creates a new observation in the people structure
based on the passed-in observation data
:param observation: person to create in people structure
:return: 201 on success, observation on person exists
"""
# deserialize to python object
new_observation: Observation = Observation()
# new_observation.id = max_id
new_observation.sta_identifier = str(uuid.uuid4())
new_observation.result_time = datetime_original
new_observation.sampling_time_start = new_observation.result_time
new_observation.sampling_time_end = new_observation.result_time
new_observation.value_type = "text"
new_observation.value_text = "https://geomon.geologie.ac.at/images/" + file_name
new_observation.fk_dataset_id = dataset.id
# Add the person to the database
dataset.observations.append(new_observation)
# db_session.commit()
if __name__ == "__main__":
# load_dotenv(find_dotenv())
# print('sensors: {}'.format(os.environ.get(
# 'GLASFASER_GSCHLIEFGRABEN_SENSORS', [])))
main()
# print(img.list_all())
# print(img.has_exif)
# # Make of device which captured image: NIKON CORPORATION
# print(f'Make: {img.get("make")}')
# # Model of device: NIKON D7000
# print(f'Model: {img.get("model")}')
# # Software involved in uploading and digitizing image: Ver.1.04
# print(f'Software: {img.get("software")}')
# # Name of photographer who took the image: not defined
# print(f'Artist: {img.get("artist")}')
# # Original datetime that image was taken (photographed)
# print(f'DateTime (Original): {img.get("datetime_original")}')
# # Details of flash function
# print(f'Flash Details: {img.get("flash")}')
# print(f"Coordinates - Image")
# print("---------------------")
# print(f"Latitude: {img.copyright} {img.get('gps_latitude_ref')}")
# print(f"Longitude: {img.get('gps_longitude')} {img.get('gps_longitude_ref')}\n")

View File

@ -1,78 +0,0 @@
'''
Sqlalchemy version: 1.2.15
Python version: 3.7
'''
import os
from datetime import datetime
from exif import Image
def main():
''' main method '''
folder_path = 'C:/Users/kaiarn/Documents/Fotos'
# img_filename = '_DSC9548.JPG'
# img_path = f'{folder_path}/{img_filename}'
# Get the list of image files in the directory that exifread supports
directory = os.listdir(folder_path)
for files in directory:
if files.endswith(('jpg', 'JPG', 'png', 'PNG', 'tiff', 'TIFF')):
file_path = os.path.join(folder_path, files)
# print(file_path)
img_file = open(file_path, 'rb')
img: Image = Image(img_file)
if img.has_exif:
info = f" has the EXIF {img.exif_version}"
else:
info = "does not contain any EXIF information"
print(f"Image {img_file.name}: {info}")
# Original datetime that image was taken (photographed)
# print(f'DateTime (Original): {img.get("datetime_original")}')
datetime_original = img.get("datetime_original")
# print(datetime_original)
# Grab the date
date_obj = datetime.strptime(
datetime_original, '%Y:%m:%d %H:%M:%S')
print(date_obj)
# print(f"Longitude: {img.get('gps_longitude')} {img.get('gps_longitude_ref')}\n")
# with open(img_path, 'rb') as img_file:
# img = Image(img_file)
# if img.has_exif:
# info = f" has the EXIF {img.exif_version}"
# else:
# info = "does not contain any EXIF information"
# print(f"Image {img_file.name}: {info}")
# print(img.list_all())
# print(img.has_exif)
# # Make of device which captured image: NIKON CORPORATION
# print(f'Make: {img.get("make")}')
# # Model of device: NIKON D7000
# print(f'Model: {img.get("model")}')
# # Software involved in uploading and digitizing image: Ver.1.04
# print(f'Software: {img.get("software")}')
# # Name of photographer who took the image: not defined
# print(f'Artist: {img.get("artist")}')
# # Original datetime that image was taken (photographed)
# print(f'DateTime (Original): {img.get("datetime_original")}')
# # Details of flash function
# print(f'Flash Details: {img.get("flash")}')
# print(f"Coordinates - Image")
# print("---------------------")
# print(f"Latitude: {img.copyright} {img.get('gps_latitude_ref')}")
# print(f"Longitude: {img.get('gps_longitude')} {img.get('gps_longitude_ref')}\n")
if __name__ == "__main__":
# load_dotenv(find_dotenv())
# print('sensors: {}'.format(os.environ.get(
# 'GLASFASER_GSCHLIEFGRABEN_SENSORS', [])))
main()