- update script for observations of voegelsberg tachymeters

This commit is contained in:
Arno Kaimbacher 2022-05-13 15:23:54 +02:00
parent 73d21775dd
commit 946faa3f7c
2 changed files with 5134 additions and 3602 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,189 @@
''' module for importing new observations to existuing datasets '''
from ast import Str
import os
import csv
# import requests
from datetime import datetime
from typing import List
from unicodedata import numeric
import uuid
from pyproj import Transformer
# from insert_sensor.wrapper import (Offering, FoI, Procedure)
from sqlalchemy.orm import session
from sqlalchemy import asc, desc
from db.models import (
Observation,
create_pg_session,
Dataset,
Procedure,
Phenomenon,
Platform
)
def main():
''' main method '''
# open postgresql session
pg_session: session = create_pg_session()
# platform_sta_identifier = "voegelsberg_tachymeter"
observations_file_path: str = os.environ.get("VOEGELSBERG_DATA_PATH")
count_new_inserted_observations: numeric = 0
list_of_not_existent_sensors: List[str] = []
# with open('voegelsberg/data.txt', 'rt', encoding="utf-8") as csvfile:
with open(observations_file_path, 'rt', encoding="utf-8") as csvfile:
spamreader = csv.DictReader(csvfile, delimiter=';', quotechar='"')
for row in spamreader:
# print(row)
sensor: str = row['Punktnummer']
pg_query = pg_session.query(Dataset) \
.join(Procedure) \
.join(Phenomenon) \
.filter(Procedure.sta_identifier == sensor)
location_dataset: Dataset = pg_query.filter(
Phenomenon.sta_identifier == "TachymeterLocation").first()
if not location_dataset:
print("Sensor " + sensor +
" ist noch nicht in der Datenbank angelegt!")
if sensor not in list_of_not_existent_sensors:
list_of_not_existent_sensors.append(sensor)
continue
zeitstempel = row['Epoche'] # '01.09.2021'
date_obj = datetime.strptime(
zeitstempel, '%d.%m.%Y').isoformat() # '2021-09-01T00:00:00'
existing_observation: bool = (
pg_session.query(Observation)
.filter(Observation.result_time ==
date_obj, Observation.fk_dataset_id == location_dataset.id)
.one_or_none()
)
successfully_inserted = False
# Can we insert this observation?
if existing_observation is None:
create_observation(location_dataset, row, pg_session)
successfully_inserted = True
count_new_inserted_observations += 1
else:
print(f"observation with result time {existing_observation.result_time} "
f"for tachymeter {sensor} already exists!")
# commit new observations:
if successfully_inserted:
if not location_dataset.is_published:
location_dataset.is_published = 1
location_dataset.is_hidden = 0
location_dataset.dataset_type = "timeseries"
# location_dataset.dataset_type = "trajectory"
location_dataset.observation_type = "simple"
# location_dataset.value_type = "geometry"
location_dataset.value_type = "text"
pg_session.commit()
# end for loop sensors end
if count_new_inserted_observations > 0:
# after inserting all observations update datetime stamps of datasets
# for location all datasets of Voegelsberg
actualize_first_last_observations()
if len(list_of_not_existent_sensors) > 0:
sep = ", "
# joins elements of list1 by ', '
# and stores in string s
failed_sensors = sep.join(list_of_not_existent_sensors)
print("Insert the following sensors an rerun this script: " +
failed_sensors)
# close postgresql session
pg_session.close()
def create_observation(location_dataset: Dataset, data, pg_session: session):
''' create observation in db'''
# print("Sesnor key exist in JSON data")
transprojr = Transformer.from_crs(31254, 4326, always_xy=True)
x_1, y_1, z_1 = (float(data['Y']), float(data['X']), float(data['H']))
cord_x, cord_y = map(float, transprojr.transform(x_1, y_1))
print((cord_x, cord_y)) # (11.597409730065536, 47.27196543449542)
sensor: str = data['Punktnummer']
zeitstempel = data['Epoche']
date_obj = datetime.strptime(zeitstempel, '%d.%m.%Y').isoformat()
# existing_observation: bool = (
# pg_session.query(Observation)
# .filter(Observation.result_time ==
# date_obj, Observation.fk_dataset_id == location_dataset.id)
# .one_or_none()
# )
# Can we insert this observation?
# if existing_observation is None:
# insert bew observation
new_observation: Observation = Observation()
# new_observation.id = max_id
new_observation.sta_identifier = str(uuid.uuid4())
new_observation.result_time = date_obj
new_observation.sampling_time_start = new_observation.result_time
new_observation.sampling_time_end = new_observation.result_time
new_observation.value_type = "text"
new_observation.value_geometry = f'POINT({cord_x} {cord_y} {z_1})'
new_observation.value_text = '{"type":"Point","coordinates":[' + str(
cord_x) + ',' + str(cord_y) + ',' + str(z_1) + ']}'
new_observation.fk_dataset_id = location_dataset.id
pg_session.add(new_observation)
print(f"new observation with result time {new_observation.result_time} "
f"for drill hole {sensor} succesfully imported!")
# return True
# else:
# print(f"observation with result time {existing_observation.result_time} "
# f"for tachymeter {sensor} already exists!")
# return False
def actualize_first_last_observations():
''' iterate through all datasets of Voregelsberg project area
and actualize last and first corresponding observations'''
pg_session: session = create_pg_session()
platform_sta_identifier = "voegelsberg_tachymeter"
# sensor_platform = pg_session.query(Platform.id) \
# .filter(Platform.sta_identifier == platform_sta_identifier) \
# .first()
voegelsberg_datasets: List[Dataset] = []
voegelsberg_datasets = pg_session.query(Dataset) \
.join(Procedure) \
.join(Phenomenon) \
.join(Platform) \
.filter(Platform.sta_identifier == platform_sta_identifier).all()
for location_dataset in voegelsberg_datasets:
last_location_observation = pg_session.query(Observation) \
.filter(Observation.fk_dataset_id == location_dataset.id) \
.order_by(desc('sampling_time_start')) \
.first()
if last_location_observation is not None:
location_dataset.last_time = last_location_observation.sampling_time_start
# location_dataset.last_value = last_location_observation.value_quantity
location_dataset.fk_last_observation_id = last_location_observation.id
first_location_observation = pg_session.query(Observation) \
.filter(Observation.fk_dataset_id == location_dataset.id) \
.order_by(asc('sampling_time_start')) \
.first()
if first_location_observation is not None:
location_dataset.first_time = first_location_observation.sampling_time_start
# roll_dataset.first_value = first_location_observation.value_quantity
location_dataset.fk_first_observation_id = first_location_observation.id
pg_session.commit()
if __name__ == '__main__':
main()