tethys-feature-service/node_modules/proj4/lib/projections/somerc.js
2023-10-02 15:04:02 +02:00

87 lines
2.9 KiB
JavaScript

/*
references:
Formules et constantes pour le Calcul pour la
projection cylindrique conforme à axe oblique et pour la transformation entre
des systèmes de référence.
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
*/
export function init() {
var phy0 = this.lat0;
this.lambda0 = this.long0;
var sinPhy0 = Math.sin(phy0);
var semiMajorAxis = this.a;
var invF = this.rf;
var flattening = 1 / invF;
var e2 = 2 * flattening - Math.pow(flattening, 2);
var e = this.e = Math.sqrt(e2);
this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
this.b0 = Math.asin(sinPhy0 / this.alpha);
var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
}
export function forward(p) {
var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
var S = -this.alpha * (Sa1 + Sa2) + this.K;
// spheric latitude
var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
// spheric longitude
var I = this.alpha * (p.x - this.lambda0);
// psoeudo equatorial rotation
var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
p.x = this.R * rotI + this.x0;
return p;
}
export function inverse(p) {
var Y = p.x - this.x0;
var X = p.y - this.y0;
var rotI = Y / this.R;
var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
var lambda = this.lambda0 + I / this.alpha;
var S = 0;
var phy = b;
var prevPhy = -1000;
var iteration = 0;
while (Math.abs(phy - prevPhy) > 0.0000001) {
if (++iteration > 20) {
//...reportError("omercFwdInfinity");
return;
}
//S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
prevPhy = phy;
phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
}
p.x = lambda;
p.y = phy;
return p;
}
export var names = ["somerc"];
export default {
init: init,
forward: forward,
inverse: inverse,
names: names
};