7356 lines
220 KiB
JavaScript
7356 lines
220 KiB
JavaScript
(function (global, factory) {
|
||
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
|
||
typeof define === 'function' && define.amd ? define(factory) :
|
||
(global.proj4 = factory());
|
||
}(this, (function () { 'use strict';
|
||
|
||
var globals = function(defs) {
|
||
defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
|
||
defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
|
||
defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
|
||
|
||
defs.WGS84 = defs['EPSG:4326'];
|
||
defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
|
||
defs.GOOGLE = defs['EPSG:3857'];
|
||
defs['EPSG:900913'] = defs['EPSG:3857'];
|
||
defs['EPSG:102113'] = defs['EPSG:3857'];
|
||
};
|
||
|
||
var PJD_3PARAM = 1;
|
||
var PJD_7PARAM = 2;
|
||
var PJD_GRIDSHIFT = 3;
|
||
var PJD_WGS84 = 4; // WGS84 or equivalent
|
||
var PJD_NODATUM = 5; // WGS84 or equivalent
|
||
var SRS_WGS84_SEMIMAJOR = 6378137.0; // only used in grid shift transforms
|
||
var SRS_WGS84_SEMIMINOR = 6356752.314; // only used in grid shift transforms
|
||
var SRS_WGS84_ESQUARED = 0.0066943799901413165; // only used in grid shift transforms
|
||
var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
|
||
var HALF_PI = Math.PI/2;
|
||
// ellipoid pj_set_ell.c
|
||
var SIXTH = 0.1666666666666666667;
|
||
/* 1/6 */
|
||
var RA4 = 0.04722222222222222222;
|
||
/* 17/360 */
|
||
var RA6 = 0.02215608465608465608;
|
||
var EPSLN = 1.0e-10;
|
||
// you'd think you could use Number.EPSILON above but that makes
|
||
// Mollweide get into an infinate loop.
|
||
|
||
var D2R = 0.01745329251994329577;
|
||
var R2D = 57.29577951308232088;
|
||
var FORTPI = Math.PI/4;
|
||
var TWO_PI = Math.PI * 2;
|
||
// SPI is slightly greater than Math.PI, so values that exceed the -180..180
|
||
// degree range by a tiny amount don't get wrapped. This prevents points that
|
||
// have drifted from their original location along the 180th meridian (due to
|
||
// floating point error) from changing their sign.
|
||
var SPI = 3.14159265359;
|
||
|
||
var exports$1 = {};
|
||
exports$1.greenwich = 0.0; //"0dE",
|
||
exports$1.lisbon = -9.131906111111; //"9d07'54.862\"W",
|
||
exports$1.paris = 2.337229166667; //"2d20'14.025\"E",
|
||
exports$1.bogota = -74.080916666667; //"74d04'51.3\"W",
|
||
exports$1.madrid = -3.687938888889; //"3d41'16.58\"W",
|
||
exports$1.rome = 12.452333333333; //"12d27'8.4\"E",
|
||
exports$1.bern = 7.439583333333; //"7d26'22.5\"E",
|
||
exports$1.jakarta = 106.807719444444; //"106d48'27.79\"E",
|
||
exports$1.ferro = -17.666666666667; //"17d40'W",
|
||
exports$1.brussels = 4.367975; //"4d22'4.71\"E",
|
||
exports$1.stockholm = 18.058277777778; //"18d3'29.8\"E",
|
||
exports$1.athens = 23.7163375; //"23d42'58.815\"E",
|
||
exports$1.oslo = 10.722916666667; //"10d43'22.5\"E"
|
||
|
||
var units = {
|
||
ft: {to_meter: 0.3048},
|
||
'us-ft': {to_meter: 1200 / 3937}
|
||
};
|
||
|
||
var ignoredChar = /[\s_\-\/\(\)]/g;
|
||
function match(obj, key) {
|
||
if (obj[key]) {
|
||
return obj[key];
|
||
}
|
||
var keys = Object.keys(obj);
|
||
var lkey = key.toLowerCase().replace(ignoredChar, '');
|
||
var i = -1;
|
||
var testkey, processedKey;
|
||
while (++i < keys.length) {
|
||
testkey = keys[i];
|
||
processedKey = testkey.toLowerCase().replace(ignoredChar, '');
|
||
if (processedKey === lkey) {
|
||
return obj[testkey];
|
||
}
|
||
}
|
||
}
|
||
|
||
var parseProj = function(defData) {
|
||
var self = {};
|
||
var paramObj = defData.split('+').map(function(v) {
|
||
return v.trim();
|
||
}).filter(function(a) {
|
||
return a;
|
||
}).reduce(function(p, a) {
|
||
var split = a.split('=');
|
||
split.push(true);
|
||
p[split[0].toLowerCase()] = split[1];
|
||
return p;
|
||
}, {});
|
||
var paramName, paramVal, paramOutname;
|
||
var params = {
|
||
proj: 'projName',
|
||
datum: 'datumCode',
|
||
rf: function(v) {
|
||
self.rf = parseFloat(v);
|
||
},
|
||
lat_0: function(v) {
|
||
self.lat0 = v * D2R;
|
||
},
|
||
lat_1: function(v) {
|
||
self.lat1 = v * D2R;
|
||
},
|
||
lat_2: function(v) {
|
||
self.lat2 = v * D2R;
|
||
},
|
||
lat_ts: function(v) {
|
||
self.lat_ts = v * D2R;
|
||
},
|
||
lon_0: function(v) {
|
||
self.long0 = v * D2R;
|
||
},
|
||
lon_1: function(v) {
|
||
self.long1 = v * D2R;
|
||
},
|
||
lon_2: function(v) {
|
||
self.long2 = v * D2R;
|
||
},
|
||
alpha: function(v) {
|
||
self.alpha = parseFloat(v) * D2R;
|
||
},
|
||
gamma: function(v) {
|
||
self.rectified_grid_angle = parseFloat(v);
|
||
},
|
||
lonc: function(v) {
|
||
self.longc = v * D2R;
|
||
},
|
||
x_0: function(v) {
|
||
self.x0 = parseFloat(v);
|
||
},
|
||
y_0: function(v) {
|
||
self.y0 = parseFloat(v);
|
||
},
|
||
k_0: function(v) {
|
||
self.k0 = parseFloat(v);
|
||
},
|
||
k: function(v) {
|
||
self.k0 = parseFloat(v);
|
||
},
|
||
a: function(v) {
|
||
self.a = parseFloat(v);
|
||
},
|
||
b: function(v) {
|
||
self.b = parseFloat(v);
|
||
},
|
||
r_a: function() {
|
||
self.R_A = true;
|
||
},
|
||
zone: function(v) {
|
||
self.zone = parseInt(v, 10);
|
||
},
|
||
south: function() {
|
||
self.utmSouth = true;
|
||
},
|
||
towgs84: function(v) {
|
||
self.datum_params = v.split(",").map(function(a) {
|
||
return parseFloat(a);
|
||
});
|
||
},
|
||
to_meter: function(v) {
|
||
self.to_meter = parseFloat(v);
|
||
},
|
||
units: function(v) {
|
||
self.units = v;
|
||
var unit = match(units, v);
|
||
if (unit) {
|
||
self.to_meter = unit.to_meter;
|
||
}
|
||
},
|
||
from_greenwich: function(v) {
|
||
self.from_greenwich = v * D2R;
|
||
},
|
||
pm: function(v) {
|
||
var pm = match(exports$1, v);
|
||
self.from_greenwich = (pm ? pm : parseFloat(v)) * D2R;
|
||
},
|
||
nadgrids: function(v) {
|
||
if (v === '@null') {
|
||
self.datumCode = 'none';
|
||
}
|
||
else {
|
||
self.nadgrids = v;
|
||
}
|
||
},
|
||
axis: function(v) {
|
||
var legalAxis = "ewnsud";
|
||
if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
|
||
self.axis = v;
|
||
}
|
||
},
|
||
approx: function() {
|
||
self.approx = true;
|
||
}
|
||
};
|
||
for (paramName in paramObj) {
|
||
paramVal = paramObj[paramName];
|
||
if (paramName in params) {
|
||
paramOutname = params[paramName];
|
||
if (typeof paramOutname === 'function') {
|
||
paramOutname(paramVal);
|
||
}
|
||
else {
|
||
self[paramOutname] = paramVal;
|
||
}
|
||
}
|
||
else {
|
||
self[paramName] = paramVal;
|
||
}
|
||
}
|
||
if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
|
||
self.datumCode = self.datumCode.toLowerCase();
|
||
}
|
||
return self;
|
||
};
|
||
|
||
var NEUTRAL = 1;
|
||
var KEYWORD = 2;
|
||
var NUMBER = 3;
|
||
var QUOTED = 4;
|
||
var AFTERQUOTE = 5;
|
||
var ENDED = -1;
|
||
var whitespace = /\s/;
|
||
var latin = /[A-Za-z]/;
|
||
var keyword = /[A-Za-z84_]/;
|
||
var endThings = /[,\]]/;
|
||
var digets = /[\d\.E\-\+]/;
|
||
// const ignoredChar = /[\s_\-\/\(\)]/g;
|
||
function Parser(text) {
|
||
if (typeof text !== 'string') {
|
||
throw new Error('not a string');
|
||
}
|
||
this.text = text.trim();
|
||
this.level = 0;
|
||
this.place = 0;
|
||
this.root = null;
|
||
this.stack = [];
|
||
this.currentObject = null;
|
||
this.state = NEUTRAL;
|
||
}
|
||
Parser.prototype.readCharicter = function() {
|
||
var char = this.text[this.place++];
|
||
if (this.state !== QUOTED) {
|
||
while (whitespace.test(char)) {
|
||
if (this.place >= this.text.length) {
|
||
return;
|
||
}
|
||
char = this.text[this.place++];
|
||
}
|
||
}
|
||
switch (this.state) {
|
||
case NEUTRAL:
|
||
return this.neutral(char);
|
||
case KEYWORD:
|
||
return this.keyword(char)
|
||
case QUOTED:
|
||
return this.quoted(char);
|
||
case AFTERQUOTE:
|
||
return this.afterquote(char);
|
||
case NUMBER:
|
||
return this.number(char);
|
||
case ENDED:
|
||
return;
|
||
}
|
||
};
|
||
Parser.prototype.afterquote = function(char) {
|
||
if (char === '"') {
|
||
this.word += '"';
|
||
this.state = QUOTED;
|
||
return;
|
||
}
|
||
if (endThings.test(char)) {
|
||
this.word = this.word.trim();
|
||
this.afterItem(char);
|
||
return;
|
||
}
|
||
throw new Error('havn\'t handled "' +char + '" in afterquote yet, index ' + this.place);
|
||
};
|
||
Parser.prototype.afterItem = function(char) {
|
||
if (char === ',') {
|
||
if (this.word !== null) {
|
||
this.currentObject.push(this.word);
|
||
}
|
||
this.word = null;
|
||
this.state = NEUTRAL;
|
||
return;
|
||
}
|
||
if (char === ']') {
|
||
this.level--;
|
||
if (this.word !== null) {
|
||
this.currentObject.push(this.word);
|
||
this.word = null;
|
||
}
|
||
this.state = NEUTRAL;
|
||
this.currentObject = this.stack.pop();
|
||
if (!this.currentObject) {
|
||
this.state = ENDED;
|
||
}
|
||
|
||
return;
|
||
}
|
||
};
|
||
Parser.prototype.number = function(char) {
|
||
if (digets.test(char)) {
|
||
this.word += char;
|
||
return;
|
||
}
|
||
if (endThings.test(char)) {
|
||
this.word = parseFloat(this.word);
|
||
this.afterItem(char);
|
||
return;
|
||
}
|
||
throw new Error('havn\'t handled "' +char + '" in number yet, index ' + this.place);
|
||
};
|
||
Parser.prototype.quoted = function(char) {
|
||
if (char === '"') {
|
||
this.state = AFTERQUOTE;
|
||
return;
|
||
}
|
||
this.word += char;
|
||
return;
|
||
};
|
||
Parser.prototype.keyword = function(char) {
|
||
if (keyword.test(char)) {
|
||
this.word += char;
|
||
return;
|
||
}
|
||
if (char === '[') {
|
||
var newObjects = [];
|
||
newObjects.push(this.word);
|
||
this.level++;
|
||
if (this.root === null) {
|
||
this.root = newObjects;
|
||
} else {
|
||
this.currentObject.push(newObjects);
|
||
}
|
||
this.stack.push(this.currentObject);
|
||
this.currentObject = newObjects;
|
||
this.state = NEUTRAL;
|
||
return;
|
||
}
|
||
if (endThings.test(char)) {
|
||
this.afterItem(char);
|
||
return;
|
||
}
|
||
throw new Error('havn\'t handled "' +char + '" in keyword yet, index ' + this.place);
|
||
};
|
||
Parser.prototype.neutral = function(char) {
|
||
if (latin.test(char)) {
|
||
this.word = char;
|
||
this.state = KEYWORD;
|
||
return;
|
||
}
|
||
if (char === '"') {
|
||
this.word = '';
|
||
this.state = QUOTED;
|
||
return;
|
||
}
|
||
if (digets.test(char)) {
|
||
this.word = char;
|
||
this.state = NUMBER;
|
||
return;
|
||
}
|
||
if (endThings.test(char)) {
|
||
this.afterItem(char);
|
||
return;
|
||
}
|
||
throw new Error('havn\'t handled "' +char + '" in neutral yet, index ' + this.place);
|
||
};
|
||
Parser.prototype.output = function() {
|
||
while (this.place < this.text.length) {
|
||
this.readCharicter();
|
||
}
|
||
if (this.state === ENDED) {
|
||
return this.root;
|
||
}
|
||
throw new Error('unable to parse string "' +this.text + '". State is ' + this.state);
|
||
};
|
||
|
||
function parseString(txt) {
|
||
var parser = new Parser(txt);
|
||
return parser.output();
|
||
}
|
||
|
||
function mapit(obj, key, value) {
|
||
if (Array.isArray(key)) {
|
||
value.unshift(key);
|
||
key = null;
|
||
}
|
||
var thing = key ? {} : obj;
|
||
|
||
var out = value.reduce(function(newObj, item) {
|
||
sExpr(item, newObj);
|
||
return newObj
|
||
}, thing);
|
||
if (key) {
|
||
obj[key] = out;
|
||
}
|
||
}
|
||
|
||
function sExpr(v, obj) {
|
||
if (!Array.isArray(v)) {
|
||
obj[v] = true;
|
||
return;
|
||
}
|
||
var key = v.shift();
|
||
if (key === 'PARAMETER') {
|
||
key = v.shift();
|
||
}
|
||
if (v.length === 1) {
|
||
if (Array.isArray(v[0])) {
|
||
obj[key] = {};
|
||
sExpr(v[0], obj[key]);
|
||
return;
|
||
}
|
||
obj[key] = v[0];
|
||
return;
|
||
}
|
||
if (!v.length) {
|
||
obj[key] = true;
|
||
return;
|
||
}
|
||
if (key === 'TOWGS84') {
|
||
obj[key] = v;
|
||
return;
|
||
}
|
||
if (key === 'AXIS') {
|
||
if (!(key in obj)) {
|
||
obj[key] = [];
|
||
}
|
||
obj[key].push(v);
|
||
return;
|
||
}
|
||
if (!Array.isArray(key)) {
|
||
obj[key] = {};
|
||
}
|
||
|
||
var i;
|
||
switch (key) {
|
||
case 'UNIT':
|
||
case 'PRIMEM':
|
||
case 'VERT_DATUM':
|
||
obj[key] = {
|
||
name: v[0].toLowerCase(),
|
||
convert: v[1]
|
||
};
|
||
if (v.length === 3) {
|
||
sExpr(v[2], obj[key]);
|
||
}
|
||
return;
|
||
case 'SPHEROID':
|
||
case 'ELLIPSOID':
|
||
obj[key] = {
|
||
name: v[0],
|
||
a: v[1],
|
||
rf: v[2]
|
||
};
|
||
if (v.length === 4) {
|
||
sExpr(v[3], obj[key]);
|
||
}
|
||
return;
|
||
case 'PROJECTEDCRS':
|
||
case 'PROJCRS':
|
||
case 'GEOGCS':
|
||
case 'GEOCCS':
|
||
case 'PROJCS':
|
||
case 'LOCAL_CS':
|
||
case 'GEODCRS':
|
||
case 'GEODETICCRS':
|
||
case 'GEODETICDATUM':
|
||
case 'EDATUM':
|
||
case 'ENGINEERINGDATUM':
|
||
case 'VERT_CS':
|
||
case 'VERTCRS':
|
||
case 'VERTICALCRS':
|
||
case 'COMPD_CS':
|
||
case 'COMPOUNDCRS':
|
||
case 'ENGINEERINGCRS':
|
||
case 'ENGCRS':
|
||
case 'FITTED_CS':
|
||
case 'LOCAL_DATUM':
|
||
case 'DATUM':
|
||
v[0] = ['name', v[0]];
|
||
mapit(obj, key, v);
|
||
return;
|
||
default:
|
||
i = -1;
|
||
while (++i < v.length) {
|
||
if (!Array.isArray(v[i])) {
|
||
return sExpr(v, obj[key]);
|
||
}
|
||
}
|
||
return mapit(obj, key, v);
|
||
}
|
||
}
|
||
|
||
var D2R$1 = 0.01745329251994329577;
|
||
function rename(obj, params) {
|
||
var outName = params[0];
|
||
var inName = params[1];
|
||
if (!(outName in obj) && (inName in obj)) {
|
||
obj[outName] = obj[inName];
|
||
if (params.length === 3) {
|
||
obj[outName] = params[2](obj[outName]);
|
||
}
|
||
}
|
||
}
|
||
|
||
function d2r(input) {
|
||
return input * D2R$1;
|
||
}
|
||
|
||
function cleanWKT(wkt) {
|
||
if (wkt.type === 'GEOGCS') {
|
||
wkt.projName = 'longlat';
|
||
} else if (wkt.type === 'LOCAL_CS') {
|
||
wkt.projName = 'identity';
|
||
wkt.local = true;
|
||
} else {
|
||
if (typeof wkt.PROJECTION === 'object') {
|
||
wkt.projName = Object.keys(wkt.PROJECTION)[0];
|
||
} else {
|
||
wkt.projName = wkt.PROJECTION;
|
||
}
|
||
}
|
||
if (wkt.AXIS) {
|
||
var axisOrder = '';
|
||
for (var i = 0, ii = wkt.AXIS.length; i < ii; ++i) {
|
||
var axis = [wkt.AXIS[i][0].toLowerCase(), wkt.AXIS[i][1].toLowerCase()];
|
||
if (axis[0].indexOf('north') !== -1 || ((axis[0] === 'y' || axis[0] === 'lat') && axis[1] === 'north')) {
|
||
axisOrder += 'n';
|
||
} else if (axis[0].indexOf('south') !== -1 || ((axis[0] === 'y' || axis[0] === 'lat') && axis[1] === 'south')) {
|
||
axisOrder += 's';
|
||
} else if (axis[0].indexOf('east') !== -1 || ((axis[0] === 'x' || axis[0] === 'lon') && axis[1] === 'east')) {
|
||
axisOrder += 'e';
|
||
} else if (axis[0].indexOf('west') !== -1 || ((axis[0] === 'x' || axis[0] === 'lon') && axis[1] === 'west')) {
|
||
axisOrder += 'w';
|
||
}
|
||
}
|
||
if (axisOrder.length === 2) {
|
||
axisOrder += 'u';
|
||
}
|
||
if (axisOrder.length === 3) {
|
||
wkt.axis = axisOrder;
|
||
}
|
||
}
|
||
if (wkt.UNIT) {
|
||
wkt.units = wkt.UNIT.name.toLowerCase();
|
||
if (wkt.units === 'metre') {
|
||
wkt.units = 'meter';
|
||
}
|
||
if (wkt.UNIT.convert) {
|
||
if (wkt.type === 'GEOGCS') {
|
||
if (wkt.DATUM && wkt.DATUM.SPHEROID) {
|
||
wkt.to_meter = wkt.UNIT.convert*wkt.DATUM.SPHEROID.a;
|
||
}
|
||
} else {
|
||
wkt.to_meter = wkt.UNIT.convert;
|
||
}
|
||
}
|
||
}
|
||
var geogcs = wkt.GEOGCS;
|
||
if (wkt.type === 'GEOGCS') {
|
||
geogcs = wkt;
|
||
}
|
||
if (geogcs) {
|
||
//if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){
|
||
// wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R;
|
||
//}
|
||
if (geogcs.DATUM) {
|
||
wkt.datumCode = geogcs.DATUM.name.toLowerCase();
|
||
} else {
|
||
wkt.datumCode = geogcs.name.toLowerCase();
|
||
}
|
||
if (wkt.datumCode.slice(0, 2) === 'd_') {
|
||
wkt.datumCode = wkt.datumCode.slice(2);
|
||
}
|
||
if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') {
|
||
wkt.datumCode = 'nzgd49';
|
||
}
|
||
if (wkt.datumCode === 'wgs_1984' || wkt.datumCode === 'world_geodetic_system_1984') {
|
||
if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') {
|
||
wkt.sphere = true;
|
||
}
|
||
wkt.datumCode = 'wgs84';
|
||
}
|
||
if (wkt.datumCode.slice(-6) === '_ferro') {
|
||
wkt.datumCode = wkt.datumCode.slice(0, - 6);
|
||
}
|
||
if (wkt.datumCode.slice(-8) === '_jakarta') {
|
||
wkt.datumCode = wkt.datumCode.slice(0, - 8);
|
||
}
|
||
if (~wkt.datumCode.indexOf('belge')) {
|
||
wkt.datumCode = 'rnb72';
|
||
}
|
||
if (geogcs.DATUM && geogcs.DATUM.SPHEROID) {
|
||
wkt.ellps = geogcs.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk');
|
||
if (wkt.ellps.toLowerCase().slice(0, 13) === 'international') {
|
||
wkt.ellps = 'intl';
|
||
}
|
||
|
||
wkt.a = geogcs.DATUM.SPHEROID.a;
|
||
wkt.rf = parseFloat(geogcs.DATUM.SPHEROID.rf, 10);
|
||
}
|
||
|
||
if (geogcs.DATUM && geogcs.DATUM.TOWGS84) {
|
||
wkt.datum_params = geogcs.DATUM.TOWGS84;
|
||
}
|
||
if (~wkt.datumCode.indexOf('osgb_1936')) {
|
||
wkt.datumCode = 'osgb36';
|
||
}
|
||
if (~wkt.datumCode.indexOf('osni_1952')) {
|
||
wkt.datumCode = 'osni52';
|
||
}
|
||
if (~wkt.datumCode.indexOf('tm65')
|
||
|| ~wkt.datumCode.indexOf('geodetic_datum_of_1965')) {
|
||
wkt.datumCode = 'ire65';
|
||
}
|
||
if (wkt.datumCode === 'ch1903+') {
|
||
wkt.datumCode = 'ch1903';
|
||
}
|
||
if (~wkt.datumCode.indexOf('israel')) {
|
||
wkt.datumCode = 'isr93';
|
||
}
|
||
}
|
||
if (wkt.b && !isFinite(wkt.b)) {
|
||
wkt.b = wkt.a;
|
||
}
|
||
|
||
function toMeter(input) {
|
||
var ratio = wkt.to_meter || 1;
|
||
return input * ratio;
|
||
}
|
||
var renamer = function(a) {
|
||
return rename(wkt, a);
|
||
};
|
||
var list = [
|
||
['standard_parallel_1', 'Standard_Parallel_1'],
|
||
['standard_parallel_1', 'Latitude of 1st standard parallel'],
|
||
['standard_parallel_2', 'Standard_Parallel_2'],
|
||
['standard_parallel_2', 'Latitude of 2nd standard parallel'],
|
||
['false_easting', 'False_Easting'],
|
||
['false_easting', 'False easting'],
|
||
['false-easting', 'Easting at false origin'],
|
||
['false_northing', 'False_Northing'],
|
||
['false_northing', 'False northing'],
|
||
['false_northing', 'Northing at false origin'],
|
||
['central_meridian', 'Central_Meridian'],
|
||
['central_meridian', 'Longitude of natural origin'],
|
||
['central_meridian', 'Longitude of false origin'],
|
||
['latitude_of_origin', 'Latitude_Of_Origin'],
|
||
['latitude_of_origin', 'Central_Parallel'],
|
||
['latitude_of_origin', 'Latitude of natural origin'],
|
||
['latitude_of_origin', 'Latitude of false origin'],
|
||
['scale_factor', 'Scale_Factor'],
|
||
['k0', 'scale_factor'],
|
||
['latitude_of_center', 'Latitude_Of_Center'],
|
||
['latitude_of_center', 'Latitude_of_center'],
|
||
['lat0', 'latitude_of_center', d2r],
|
||
['longitude_of_center', 'Longitude_Of_Center'],
|
||
['longitude_of_center', 'Longitude_of_center'],
|
||
['longc', 'longitude_of_center', d2r],
|
||
['x0', 'false_easting', toMeter],
|
||
['y0', 'false_northing', toMeter],
|
||
['long0', 'central_meridian', d2r],
|
||
['lat0', 'latitude_of_origin', d2r],
|
||
['lat0', 'standard_parallel_1', d2r],
|
||
['lat1', 'standard_parallel_1', d2r],
|
||
['lat2', 'standard_parallel_2', d2r],
|
||
['azimuth', 'Azimuth'],
|
||
['alpha', 'azimuth', d2r],
|
||
['srsCode', 'name']
|
||
];
|
||
list.forEach(renamer);
|
||
if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === 'Lambert_Azimuthal_Equal_Area')) {
|
||
wkt.long0 = wkt.longc;
|
||
}
|
||
if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) {
|
||
wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90);
|
||
wkt.lat_ts = wkt.lat1;
|
||
}
|
||
}
|
||
var wkt = function(wkt) {
|
||
var lisp = parseString(wkt);
|
||
var type = lisp.shift();
|
||
var name = lisp.shift();
|
||
lisp.unshift(['name', name]);
|
||
lisp.unshift(['type', type]);
|
||
var obj = {};
|
||
sExpr(lisp, obj);
|
||
cleanWKT(obj);
|
||
return obj;
|
||
};
|
||
|
||
function defs(name) {
|
||
/*global console*/
|
||
var that = this;
|
||
if (arguments.length === 2) {
|
||
var def = arguments[1];
|
||
if (typeof def === 'string') {
|
||
if (def.charAt(0) === '+') {
|
||
defs[name] = parseProj(arguments[1]);
|
||
}
|
||
else {
|
||
defs[name] = wkt(arguments[1]);
|
||
}
|
||
} else {
|
||
defs[name] = def;
|
||
}
|
||
}
|
||
else if (arguments.length === 1) {
|
||
if (Array.isArray(name)) {
|
||
return name.map(function(v) {
|
||
if (Array.isArray(v)) {
|
||
defs.apply(that, v);
|
||
}
|
||
else {
|
||
defs(v);
|
||
}
|
||
});
|
||
}
|
||
else if (typeof name === 'string') {
|
||
if (name in defs) {
|
||
return defs[name];
|
||
}
|
||
}
|
||
else if ('EPSG' in name) {
|
||
defs['EPSG:' + name.EPSG] = name;
|
||
}
|
||
else if ('ESRI' in name) {
|
||
defs['ESRI:' + name.ESRI] = name;
|
||
}
|
||
else if ('IAU2000' in name) {
|
||
defs['IAU2000:' + name.IAU2000] = name;
|
||
}
|
||
else {
|
||
console.log(name);
|
||
}
|
||
return;
|
||
}
|
||
|
||
|
||
}
|
||
globals(defs);
|
||
|
||
function testObj(code){
|
||
return typeof code === 'string';
|
||
}
|
||
function testDef(code){
|
||
return code in defs;
|
||
}
|
||
var codeWords = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS','GEOCCS','PROJCS','LOCAL_CS', 'GEODCRS', 'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS'];
|
||
function testWKT(code){
|
||
return codeWords.some(function (word) {
|
||
return code.indexOf(word) > -1;
|
||
});
|
||
}
|
||
var codes = ['3857', '900913', '3785', '102113'];
|
||
function checkMercator(item) {
|
||
var auth = match(item, 'authority');
|
||
if (!auth) {
|
||
return;
|
||
}
|
||
var code = match(auth, 'epsg');
|
||
return code && codes.indexOf(code) > -1;
|
||
}
|
||
function checkProjStr(item) {
|
||
var ext = match(item, 'extension');
|
||
if (!ext) {
|
||
return;
|
||
}
|
||
return match(ext, 'proj4');
|
||
}
|
||
function testProj(code){
|
||
return code[0] === '+';
|
||
}
|
||
function parse(code){
|
||
if (testObj(code)) {
|
||
//check to see if this is a WKT string
|
||
if (testDef(code)) {
|
||
return defs[code];
|
||
}
|
||
if (testWKT(code)) {
|
||
var out = wkt(code);
|
||
// test of spetial case, due to this being a very common and often malformed
|
||
if (checkMercator(out)) {
|
||
return defs['EPSG:3857'];
|
||
}
|
||
var maybeProjStr = checkProjStr(out);
|
||
if (maybeProjStr) {
|
||
return parseProj(maybeProjStr);
|
||
}
|
||
return out;
|
||
}
|
||
if (testProj(code)) {
|
||
return parseProj(code);
|
||
}
|
||
}else{
|
||
return code;
|
||
}
|
||
}
|
||
|
||
var extend = function(destination, source) {
|
||
destination = destination || {};
|
||
var value, property;
|
||
if (!source) {
|
||
return destination;
|
||
}
|
||
for (property in source) {
|
||
value = source[property];
|
||
if (value !== undefined) {
|
||
destination[property] = value;
|
||
}
|
||
}
|
||
return destination;
|
||
};
|
||
|
||
var msfnz = function(eccent, sinphi, cosphi) {
|
||
var con = eccent * sinphi;
|
||
return cosphi / (Math.sqrt(1 - con * con));
|
||
};
|
||
|
||
var sign = function(x) {
|
||
return x<0 ? -1 : 1;
|
||
};
|
||
|
||
var adjust_lon = function(x) {
|
||
return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
|
||
};
|
||
|
||
var tsfnz = function(eccent, phi, sinphi) {
|
||
var con = eccent * sinphi;
|
||
var com = 0.5 * eccent;
|
||
con = Math.pow(((1 - con) / (1 + con)), com);
|
||
return (Math.tan(0.5 * (HALF_PI - phi)) / con);
|
||
};
|
||
|
||
var phi2z = function(eccent, ts) {
|
||
var eccnth = 0.5 * eccent;
|
||
var con, dphi;
|
||
var phi = HALF_PI - 2 * Math.atan(ts);
|
||
for (var i = 0; i <= 15; i++) {
|
||
con = eccent * Math.sin(phi);
|
||
dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
|
||
phi += dphi;
|
||
if (Math.abs(dphi) <= 0.0000000001) {
|
||
return phi;
|
||
}
|
||
}
|
||
//console.log("phi2z has NoConvergence");
|
||
return -9999;
|
||
};
|
||
|
||
function init() {
|
||
var con = this.b / this.a;
|
||
this.es = 1 - con * con;
|
||
if(!('x0' in this)){
|
||
this.x0 = 0;
|
||
}
|
||
if(!('y0' in this)){
|
||
this.y0 = 0;
|
||
}
|
||
this.e = Math.sqrt(this.es);
|
||
if (this.lat_ts) {
|
||
if (this.sphere) {
|
||
this.k0 = Math.cos(this.lat_ts);
|
||
}
|
||
else {
|
||
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
|
||
}
|
||
}
|
||
else {
|
||
if (!this.k0) {
|
||
if (this.k) {
|
||
this.k0 = this.k;
|
||
}
|
||
else {
|
||
this.k0 = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mercator forward equations--mapping lat,long to x,y
|
||
--------------------------------------------------*/
|
||
|
||
function forward(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
// convert to radians
|
||
if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
|
||
return null;
|
||
}
|
||
|
||
var x, y;
|
||
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
|
||
return null;
|
||
}
|
||
else {
|
||
if (this.sphere) {
|
||
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
|
||
y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
|
||
}
|
||
else {
|
||
var sinphi = Math.sin(lat);
|
||
var ts = tsfnz(this.e, lat, sinphi);
|
||
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
|
||
y = this.y0 - this.a * this.k0 * Math.log(ts);
|
||
}
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
}
|
||
|
||
/* Mercator inverse equations--mapping x,y to lat/long
|
||
--------------------------------------------------*/
|
||
function inverse(p) {
|
||
|
||
var x = p.x - this.x0;
|
||
var y = p.y - this.y0;
|
||
var lon, lat;
|
||
|
||
if (this.sphere) {
|
||
lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
|
||
}
|
||
else {
|
||
var ts = Math.exp(-y / (this.a * this.k0));
|
||
lat = phi2z(this.e, ts);
|
||
if (lat === -9999) {
|
||
return null;
|
||
}
|
||
}
|
||
lon = adjust_lon(this.long0 + x / (this.a * this.k0));
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$1 = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
|
||
var merc = {
|
||
init: init,
|
||
forward: forward,
|
||
inverse: inverse,
|
||
names: names$1
|
||
};
|
||
|
||
function init$1() {
|
||
//no-op for longlat
|
||
}
|
||
|
||
function identity(pt) {
|
||
return pt;
|
||
}
|
||
var names$2 = ["longlat", "identity"];
|
||
var longlat = {
|
||
init: init$1,
|
||
forward: identity,
|
||
inverse: identity,
|
||
names: names$2
|
||
};
|
||
|
||
var projs = [merc, longlat];
|
||
var names = {};
|
||
var projStore = [];
|
||
|
||
function add(proj, i) {
|
||
var len = projStore.length;
|
||
if (!proj.names) {
|
||
console.log(i);
|
||
return true;
|
||
}
|
||
projStore[len] = proj;
|
||
proj.names.forEach(function(n) {
|
||
names[n.toLowerCase()] = len;
|
||
});
|
||
return this;
|
||
}
|
||
|
||
function get(name) {
|
||
if (!name) {
|
||
return false;
|
||
}
|
||
var n = name.toLowerCase();
|
||
if (typeof names[n] !== 'undefined' && projStore[names[n]]) {
|
||
return projStore[names[n]];
|
||
}
|
||
}
|
||
|
||
function start() {
|
||
projs.forEach(add);
|
||
}
|
||
var projections = {
|
||
start: start,
|
||
add: add,
|
||
get: get
|
||
};
|
||
|
||
var exports$2 = {};
|
||
exports$2.MERIT = {
|
||
a: 6378137.0,
|
||
rf: 298.257,
|
||
ellipseName: "MERIT 1983"
|
||
};
|
||
|
||
exports$2.SGS85 = {
|
||
a: 6378136.0,
|
||
rf: 298.257,
|
||
ellipseName: "Soviet Geodetic System 85"
|
||
};
|
||
|
||
exports$2.GRS80 = {
|
||
a: 6378137.0,
|
||
rf: 298.257222101,
|
||
ellipseName: "GRS 1980(IUGG, 1980)"
|
||
};
|
||
|
||
exports$2.IAU76 = {
|
||
a: 6378140.0,
|
||
rf: 298.257,
|
||
ellipseName: "IAU 1976"
|
||
};
|
||
|
||
exports$2.airy = {
|
||
a: 6377563.396,
|
||
b: 6356256.910,
|
||
ellipseName: "Airy 1830"
|
||
};
|
||
|
||
exports$2.APL4 = {
|
||
a: 6378137,
|
||
rf: 298.25,
|
||
ellipseName: "Appl. Physics. 1965"
|
||
};
|
||
|
||
exports$2.NWL9D = {
|
||
a: 6378145.0,
|
||
rf: 298.25,
|
||
ellipseName: "Naval Weapons Lab., 1965"
|
||
};
|
||
|
||
exports$2.mod_airy = {
|
||
a: 6377340.189,
|
||
b: 6356034.446,
|
||
ellipseName: "Modified Airy"
|
||
};
|
||
|
||
exports$2.andrae = {
|
||
a: 6377104.43,
|
||
rf: 300.0,
|
||
ellipseName: "Andrae 1876 (Den., Iclnd.)"
|
||
};
|
||
|
||
exports$2.aust_SA = {
|
||
a: 6378160.0,
|
||
rf: 298.25,
|
||
ellipseName: "Australian Natl & S. Amer. 1969"
|
||
};
|
||
|
||
exports$2.GRS67 = {
|
||
a: 6378160.0,
|
||
rf: 298.2471674270,
|
||
ellipseName: "GRS 67(IUGG 1967)"
|
||
};
|
||
|
||
exports$2.bessel = {
|
||
a: 6377397.155,
|
||
rf: 299.1528128,
|
||
ellipseName: "Bessel 1841"
|
||
};
|
||
|
||
exports$2.bess_nam = {
|
||
a: 6377483.865,
|
||
rf: 299.1528128,
|
||
ellipseName: "Bessel 1841 (Namibia)"
|
||
};
|
||
|
||
exports$2.clrk66 = {
|
||
a: 6378206.4,
|
||
b: 6356583.8,
|
||
ellipseName: "Clarke 1866"
|
||
};
|
||
|
||
exports$2.clrk80 = {
|
||
a: 6378249.145,
|
||
rf: 293.4663,
|
||
ellipseName: "Clarke 1880 mod."
|
||
};
|
||
|
||
exports$2.clrk80ign = {
|
||
a: 6378249.2,
|
||
b: 6356515,
|
||
rf: 293.4660213,
|
||
ellipseName: "Clarke 1880 (IGN)"
|
||
};
|
||
|
||
exports$2.clrk58 = {
|
||
a: 6378293.645208759,
|
||
rf: 294.2606763692654,
|
||
ellipseName: "Clarke 1858"
|
||
};
|
||
|
||
exports$2.CPM = {
|
||
a: 6375738.7,
|
||
rf: 334.29,
|
||
ellipseName: "Comm. des Poids et Mesures 1799"
|
||
};
|
||
|
||
exports$2.delmbr = {
|
||
a: 6376428.0,
|
||
rf: 311.5,
|
||
ellipseName: "Delambre 1810 (Belgium)"
|
||
};
|
||
|
||
exports$2.engelis = {
|
||
a: 6378136.05,
|
||
rf: 298.2566,
|
||
ellipseName: "Engelis 1985"
|
||
};
|
||
|
||
exports$2.evrst30 = {
|
||
a: 6377276.345,
|
||
rf: 300.8017,
|
||
ellipseName: "Everest 1830"
|
||
};
|
||
|
||
exports$2.evrst48 = {
|
||
a: 6377304.063,
|
||
rf: 300.8017,
|
||
ellipseName: "Everest 1948"
|
||
};
|
||
|
||
exports$2.evrst56 = {
|
||
a: 6377301.243,
|
||
rf: 300.8017,
|
||
ellipseName: "Everest 1956"
|
||
};
|
||
|
||
exports$2.evrst69 = {
|
||
a: 6377295.664,
|
||
rf: 300.8017,
|
||
ellipseName: "Everest 1969"
|
||
};
|
||
|
||
exports$2.evrstSS = {
|
||
a: 6377298.556,
|
||
rf: 300.8017,
|
||
ellipseName: "Everest (Sabah & Sarawak)"
|
||
};
|
||
|
||
exports$2.fschr60 = {
|
||
a: 6378166.0,
|
||
rf: 298.3,
|
||
ellipseName: "Fischer (Mercury Datum) 1960"
|
||
};
|
||
|
||
exports$2.fschr60m = {
|
||
a: 6378155.0,
|
||
rf: 298.3,
|
||
ellipseName: "Fischer 1960"
|
||
};
|
||
|
||
exports$2.fschr68 = {
|
||
a: 6378150.0,
|
||
rf: 298.3,
|
||
ellipseName: "Fischer 1968"
|
||
};
|
||
|
||
exports$2.helmert = {
|
||
a: 6378200.0,
|
||
rf: 298.3,
|
||
ellipseName: "Helmert 1906"
|
||
};
|
||
|
||
exports$2.hough = {
|
||
a: 6378270.0,
|
||
rf: 297.0,
|
||
ellipseName: "Hough"
|
||
};
|
||
|
||
exports$2.intl = {
|
||
a: 6378388.0,
|
||
rf: 297.0,
|
||
ellipseName: "International 1909 (Hayford)"
|
||
};
|
||
|
||
exports$2.kaula = {
|
||
a: 6378163.0,
|
||
rf: 298.24,
|
||
ellipseName: "Kaula 1961"
|
||
};
|
||
|
||
exports$2.lerch = {
|
||
a: 6378139.0,
|
||
rf: 298.257,
|
||
ellipseName: "Lerch 1979"
|
||
};
|
||
|
||
exports$2.mprts = {
|
||
a: 6397300.0,
|
||
rf: 191.0,
|
||
ellipseName: "Maupertius 1738"
|
||
};
|
||
|
||
exports$2.new_intl = {
|
||
a: 6378157.5,
|
||
b: 6356772.2,
|
||
ellipseName: "New International 1967"
|
||
};
|
||
|
||
exports$2.plessis = {
|
||
a: 6376523.0,
|
||
rf: 6355863.0,
|
||
ellipseName: "Plessis 1817 (France)"
|
||
};
|
||
|
||
exports$2.krass = {
|
||
a: 6378245.0,
|
||
rf: 298.3,
|
||
ellipseName: "Krassovsky, 1942"
|
||
};
|
||
|
||
exports$2.SEasia = {
|
||
a: 6378155.0,
|
||
b: 6356773.3205,
|
||
ellipseName: "Southeast Asia"
|
||
};
|
||
|
||
exports$2.walbeck = {
|
||
a: 6376896.0,
|
||
b: 6355834.8467,
|
||
ellipseName: "Walbeck"
|
||
};
|
||
|
||
exports$2.WGS60 = {
|
||
a: 6378165.0,
|
||
rf: 298.3,
|
||
ellipseName: "WGS 60"
|
||
};
|
||
|
||
exports$2.WGS66 = {
|
||
a: 6378145.0,
|
||
rf: 298.25,
|
||
ellipseName: "WGS 66"
|
||
};
|
||
|
||
exports$2.WGS7 = {
|
||
a: 6378135.0,
|
||
rf: 298.26,
|
||
ellipseName: "WGS 72"
|
||
};
|
||
|
||
var WGS84 = exports$2.WGS84 = {
|
||
a: 6378137.0,
|
||
rf: 298.257223563,
|
||
ellipseName: "WGS 84"
|
||
};
|
||
|
||
exports$2.sphere = {
|
||
a: 6370997.0,
|
||
b: 6370997.0,
|
||
ellipseName: "Normal Sphere (r=6370997)"
|
||
};
|
||
|
||
function eccentricity(a, b, rf, R_A) {
|
||
var a2 = a * a; // used in geocentric
|
||
var b2 = b * b; // used in geocentric
|
||
var es = (a2 - b2) / a2; // e ^ 2
|
||
var e = 0;
|
||
if (R_A) {
|
||
a *= 1 - es * (SIXTH + es * (RA4 + es * RA6));
|
||
a2 = a * a;
|
||
es = 0;
|
||
} else {
|
||
e = Math.sqrt(es); // eccentricity
|
||
}
|
||
var ep2 = (a2 - b2) / b2; // used in geocentric
|
||
return {
|
||
es: es,
|
||
e: e,
|
||
ep2: ep2
|
||
};
|
||
}
|
||
function sphere(a, b, rf, ellps, sphere) {
|
||
if (!a) { // do we have an ellipsoid?
|
||
var ellipse = match(exports$2, ellps);
|
||
if (!ellipse) {
|
||
ellipse = WGS84;
|
||
}
|
||
a = ellipse.a;
|
||
b = ellipse.b;
|
||
rf = ellipse.rf;
|
||
}
|
||
|
||
if (rf && !b) {
|
||
b = (1.0 - 1.0 / rf) * a;
|
||
}
|
||
if (rf === 0 || Math.abs(a - b) < EPSLN) {
|
||
sphere = true;
|
||
b = a;
|
||
}
|
||
return {
|
||
a: a,
|
||
b: b,
|
||
rf: rf,
|
||
sphere: sphere
|
||
};
|
||
}
|
||
|
||
var exports$3 = {};
|
||
exports$3.wgs84 = {
|
||
towgs84: "0,0,0",
|
||
ellipse: "WGS84",
|
||
datumName: "WGS84"
|
||
};
|
||
|
||
exports$3.ch1903 = {
|
||
towgs84: "674.374,15.056,405.346",
|
||
ellipse: "bessel",
|
||
datumName: "swiss"
|
||
};
|
||
|
||
exports$3.ggrs87 = {
|
||
towgs84: "-199.87,74.79,246.62",
|
||
ellipse: "GRS80",
|
||
datumName: "Greek_Geodetic_Reference_System_1987"
|
||
};
|
||
|
||
exports$3.nad83 = {
|
||
towgs84: "0,0,0",
|
||
ellipse: "GRS80",
|
||
datumName: "North_American_Datum_1983"
|
||
};
|
||
|
||
exports$3.nad27 = {
|
||
nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",
|
||
ellipse: "clrk66",
|
||
datumName: "North_American_Datum_1927"
|
||
};
|
||
|
||
exports$3.potsdam = {
|
||
towgs84: "598.1,73.7,418.2,0.202,0.045,-2.455,6.7",
|
||
ellipse: "bessel",
|
||
datumName: "Potsdam Rauenberg 1950 DHDN"
|
||
};
|
||
|
||
exports$3.carthage = {
|
||
towgs84: "-263.0,6.0,431.0",
|
||
ellipse: "clark80",
|
||
datumName: "Carthage 1934 Tunisia"
|
||
};
|
||
|
||
exports$3.hermannskogel = {
|
||
towgs84: "577.326,90.129,463.919,5.137,1.474,5.297,2.4232",
|
||
ellipse: "bessel",
|
||
datumName: "Hermannskogel"
|
||
};
|
||
|
||
exports$3.osni52 = {
|
||
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
|
||
ellipse: "airy",
|
||
datumName: "Irish National"
|
||
};
|
||
|
||
exports$3.ire65 = {
|
||
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
|
||
ellipse: "mod_airy",
|
||
datumName: "Ireland 1965"
|
||
};
|
||
|
||
exports$3.rassadiran = {
|
||
towgs84: "-133.63,-157.5,-158.62",
|
||
ellipse: "intl",
|
||
datumName: "Rassadiran"
|
||
};
|
||
|
||
exports$3.nzgd49 = {
|
||
towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
|
||
ellipse: "intl",
|
||
datumName: "New Zealand Geodetic Datum 1949"
|
||
};
|
||
|
||
exports$3.osgb36 = {
|
||
towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
|
||
ellipse: "airy",
|
||
datumName: "Airy 1830"
|
||
};
|
||
|
||
exports$3.s_jtsk = {
|
||
towgs84: "589,76,480",
|
||
ellipse: 'bessel',
|
||
datumName: 'S-JTSK (Ferro)'
|
||
};
|
||
|
||
exports$3.beduaram = {
|
||
towgs84: '-106,-87,188',
|
||
ellipse: 'clrk80',
|
||
datumName: 'Beduaram'
|
||
};
|
||
|
||
exports$3.gunung_segara = {
|
||
towgs84: '-403,684,41',
|
||
ellipse: 'bessel',
|
||
datumName: 'Gunung Segara Jakarta'
|
||
};
|
||
|
||
exports$3.rnb72 = {
|
||
towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
|
||
ellipse: "intl",
|
||
datumName: "Reseau National Belge 1972"
|
||
};
|
||
|
||
function datum(datumCode, datum_params, a, b, es, ep2, nadgrids) {
|
||
var out = {};
|
||
|
||
if (datumCode === undefined || datumCode === 'none') {
|
||
out.datum_type = PJD_NODATUM;
|
||
} else {
|
||
out.datum_type = PJD_WGS84;
|
||
}
|
||
|
||
if (datum_params) {
|
||
out.datum_params = datum_params.map(parseFloat);
|
||
if (out.datum_params[0] !== 0 || out.datum_params[1] !== 0 || out.datum_params[2] !== 0) {
|
||
out.datum_type = PJD_3PARAM;
|
||
}
|
||
if (out.datum_params.length > 3) {
|
||
if (out.datum_params[3] !== 0 || out.datum_params[4] !== 0 || out.datum_params[5] !== 0 || out.datum_params[6] !== 0) {
|
||
out.datum_type = PJD_7PARAM;
|
||
out.datum_params[3] *= SEC_TO_RAD;
|
||
out.datum_params[4] *= SEC_TO_RAD;
|
||
out.datum_params[5] *= SEC_TO_RAD;
|
||
out.datum_params[6] = (out.datum_params[6] / 1000000.0) + 1.0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (nadgrids) {
|
||
out.datum_type = PJD_GRIDSHIFT;
|
||
out.grids = nadgrids;
|
||
}
|
||
out.a = a; //datum object also uses these values
|
||
out.b = b;
|
||
out.es = es;
|
||
out.ep2 = ep2;
|
||
return out;
|
||
}
|
||
|
||
/**
|
||
* Resources for details of NTv2 file formats:
|
||
* - https://web.archive.org/web/20140127204822if_/http://www.mgs.gov.on.ca:80/stdprodconsume/groups/content/@mgs/@iandit/documents/resourcelist/stel02_047447.pdf
|
||
* - http://mimaka.com/help/gs/html/004_NTV2%20Data%20Format.htm
|
||
*/
|
||
|
||
var loadedNadgrids = {};
|
||
|
||
/**
|
||
* Load a binary NTv2 file (.gsb) to a key that can be used in a proj string like +nadgrids=<key>. Pass the NTv2 file
|
||
* as an ArrayBuffer.
|
||
*/
|
||
function nadgrid(key, data) {
|
||
var view = new DataView(data);
|
||
var isLittleEndian = detectLittleEndian(view);
|
||
var header = readHeader(view, isLittleEndian);
|
||
if (header.nSubgrids > 1) {
|
||
console.log('Only single NTv2 subgrids are currently supported, subsequent sub grids are ignored');
|
||
}
|
||
var subgrids = readSubgrids(view, header, isLittleEndian);
|
||
var nadgrid = {header: header, subgrids: subgrids};
|
||
loadedNadgrids[key] = nadgrid;
|
||
return nadgrid;
|
||
}
|
||
|
||
/**
|
||
* Given a proj4 value for nadgrids, return an array of loaded grids
|
||
*/
|
||
function getNadgrids(nadgrids) {
|
||
// Format details: http://proj.maptools.org/gen_parms.html
|
||
if (nadgrids === undefined) { return null; }
|
||
var grids = nadgrids.split(',');
|
||
return grids.map(parseNadgridString);
|
||
}
|
||
|
||
function parseNadgridString(value) {
|
||
if (value.length === 0) {
|
||
return null;
|
||
}
|
||
var optional = value[0] === '@';
|
||
if (optional) {
|
||
value = value.slice(1);
|
||
}
|
||
if (value === 'null') {
|
||
return {name: 'null', mandatory: !optional, grid: null, isNull: true};
|
||
}
|
||
return {
|
||
name: value,
|
||
mandatory: !optional,
|
||
grid: loadedNadgrids[value] || null,
|
||
isNull: false
|
||
};
|
||
}
|
||
|
||
function secondsToRadians(seconds) {
|
||
return (seconds / 3600) * Math.PI / 180;
|
||
}
|
||
|
||
function detectLittleEndian(view) {
|
||
var nFields = view.getInt32(8, false);
|
||
if (nFields === 11) {
|
||
return false;
|
||
}
|
||
nFields = view.getInt32(8, true);
|
||
if (nFields !== 11) {
|
||
console.warn('Failed to detect nadgrid endian-ness, defaulting to little-endian');
|
||
}
|
||
return true;
|
||
}
|
||
|
||
function readHeader(view, isLittleEndian) {
|
||
return {
|
||
nFields: view.getInt32(8, isLittleEndian),
|
||
nSubgridFields: view.getInt32(24, isLittleEndian),
|
||
nSubgrids: view.getInt32(40, isLittleEndian),
|
||
shiftType: decodeString(view, 56, 56 + 8).trim(),
|
||
fromSemiMajorAxis: view.getFloat64(120, isLittleEndian),
|
||
fromSemiMinorAxis: view.getFloat64(136, isLittleEndian),
|
||
toSemiMajorAxis: view.getFloat64(152, isLittleEndian),
|
||
toSemiMinorAxis: view.getFloat64(168, isLittleEndian),
|
||
};
|
||
}
|
||
|
||
function decodeString(view, start, end) {
|
||
return String.fromCharCode.apply(null, new Uint8Array(view.buffer.slice(start, end)));
|
||
}
|
||
|
||
function readSubgrids(view, header, isLittleEndian) {
|
||
var gridOffset = 176;
|
||
var grids = [];
|
||
for (var i = 0; i < header.nSubgrids; i++) {
|
||
var subHeader = readGridHeader(view, gridOffset, isLittleEndian);
|
||
var nodes = readGridNodes(view, gridOffset, subHeader, isLittleEndian);
|
||
var lngColumnCount = Math.round(
|
||
1 + (subHeader.upperLongitude - subHeader.lowerLongitude) / subHeader.longitudeInterval);
|
||
var latColumnCount = Math.round(
|
||
1 + (subHeader.upperLatitude - subHeader.lowerLatitude) / subHeader.latitudeInterval);
|
||
// Proj4 operates on radians whereas the coordinates are in seconds in the grid
|
||
grids.push({
|
||
ll: [secondsToRadians(subHeader.lowerLongitude), secondsToRadians(subHeader.lowerLatitude)],
|
||
del: [secondsToRadians(subHeader.longitudeInterval), secondsToRadians(subHeader.latitudeInterval)],
|
||
lim: [lngColumnCount, latColumnCount],
|
||
count: subHeader.gridNodeCount,
|
||
cvs: mapNodes(nodes)
|
||
});
|
||
}
|
||
return grids;
|
||
}
|
||
|
||
function mapNodes(nodes) {
|
||
return nodes.map(function (r) {return [secondsToRadians(r.longitudeShift), secondsToRadians(r.latitudeShift)];});
|
||
}
|
||
|
||
function readGridHeader(view, offset, isLittleEndian) {
|
||
return {
|
||
name: decodeString(view, offset + 8, offset + 16).trim(),
|
||
parent: decodeString(view, offset + 24, offset + 24 + 8).trim(),
|
||
lowerLatitude: view.getFloat64(offset + 72, isLittleEndian),
|
||
upperLatitude: view.getFloat64(offset + 88, isLittleEndian),
|
||
lowerLongitude: view.getFloat64(offset + 104, isLittleEndian),
|
||
upperLongitude: view.getFloat64(offset + 120, isLittleEndian),
|
||
latitudeInterval: view.getFloat64(offset + 136, isLittleEndian),
|
||
longitudeInterval: view.getFloat64(offset + 152, isLittleEndian),
|
||
gridNodeCount: view.getInt32(offset + 168, isLittleEndian)
|
||
};
|
||
}
|
||
|
||
function readGridNodes(view, offset, gridHeader, isLittleEndian) {
|
||
var nodesOffset = offset + 176;
|
||
var gridRecordLength = 16;
|
||
var gridShiftRecords = [];
|
||
for (var i = 0; i < gridHeader.gridNodeCount; i++) {
|
||
var record = {
|
||
latitudeShift: view.getFloat32(nodesOffset + i * gridRecordLength, isLittleEndian),
|
||
longitudeShift: view.getFloat32(nodesOffset + i * gridRecordLength + 4, isLittleEndian),
|
||
latitudeAccuracy: view.getFloat32(nodesOffset + i * gridRecordLength + 8, isLittleEndian),
|
||
longitudeAccuracy: view.getFloat32(nodesOffset + i * gridRecordLength + 12, isLittleEndian),
|
||
};
|
||
gridShiftRecords.push(record);
|
||
}
|
||
return gridShiftRecords;
|
||
}
|
||
|
||
function Projection(srsCode,callback) {
|
||
if (!(this instanceof Projection)) {
|
||
return new Projection(srsCode);
|
||
}
|
||
callback = callback || function(error){
|
||
if(error){
|
||
throw error;
|
||
}
|
||
};
|
||
var json = parse(srsCode);
|
||
if(typeof json !== 'object'){
|
||
callback(srsCode);
|
||
return;
|
||
}
|
||
var ourProj = Projection.projections.get(json.projName);
|
||
if(!ourProj){
|
||
callback(srsCode);
|
||
return;
|
||
}
|
||
if (json.datumCode && json.datumCode !== 'none') {
|
||
var datumDef = match(exports$3, json.datumCode);
|
||
if (datumDef) {
|
||
json.datum_params = json.datum_params || (datumDef.towgs84 ? datumDef.towgs84.split(',') : null);
|
||
json.ellps = datumDef.ellipse;
|
||
json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
|
||
}
|
||
}
|
||
json.k0 = json.k0 || 1.0;
|
||
json.axis = json.axis || 'enu';
|
||
json.ellps = json.ellps || 'wgs84';
|
||
json.lat1 = json.lat1 || json.lat0; // Lambert_Conformal_Conic_1SP, for example, needs this
|
||
|
||
var sphere_ = sphere(json.a, json.b, json.rf, json.ellps, json.sphere);
|
||
var ecc = eccentricity(sphere_.a, sphere_.b, sphere_.rf, json.R_A);
|
||
var nadgrids = getNadgrids(json.nadgrids);
|
||
var datumObj = json.datum || datum(json.datumCode, json.datum_params, sphere_.a, sphere_.b, ecc.es, ecc.ep2,
|
||
nadgrids);
|
||
|
||
extend(this, json); // transfer everything over from the projection because we don't know what we'll need
|
||
extend(this, ourProj); // transfer all the methods from the projection
|
||
|
||
// copy the 4 things over we calculated in deriveConstants.sphere
|
||
this.a = sphere_.a;
|
||
this.b = sphere_.b;
|
||
this.rf = sphere_.rf;
|
||
this.sphere = sphere_.sphere;
|
||
|
||
// copy the 3 things we calculated in deriveConstants.eccentricity
|
||
this.es = ecc.es;
|
||
this.e = ecc.e;
|
||
this.ep2 = ecc.ep2;
|
||
|
||
// add in the datum object
|
||
this.datum = datumObj;
|
||
|
||
// init the projection
|
||
this.init();
|
||
|
||
// legecy callback from back in the day when it went to spatialreference.org
|
||
callback(null, this);
|
||
|
||
}
|
||
Projection.projections = projections;
|
||
Projection.projections.start();
|
||
|
||
'use strict';
|
||
function compareDatums(source, dest) {
|
||
if (source.datum_type !== dest.datum_type) {
|
||
return false; // false, datums are not equal
|
||
} else if (source.a !== dest.a || Math.abs(source.es - dest.es) > 0.000000000050) {
|
||
// the tolerance for es is to ensure that GRS80 and WGS84
|
||
// are considered identical
|
||
return false;
|
||
} else if (source.datum_type === PJD_3PARAM) {
|
||
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2]);
|
||
} else if (source.datum_type === PJD_7PARAM) {
|
||
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2] && source.datum_params[3] === dest.datum_params[3] && source.datum_params[4] === dest.datum_params[4] && source.datum_params[5] === dest.datum_params[5] && source.datum_params[6] === dest.datum_params[6]);
|
||
} else {
|
||
return true; // datums are equal
|
||
}
|
||
} // cs_compare_datums()
|
||
|
||
/*
|
||
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
|
||
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
|
||
* according to the current ellipsoid parameters.
|
||
*
|
||
* Latitude : Geodetic latitude in radians (input)
|
||
* Longitude : Geodetic longitude in radians (input)
|
||
* Height : Geodetic height, in meters (input)
|
||
* X : Calculated Geocentric X coordinate, in meters (output)
|
||
* Y : Calculated Geocentric Y coordinate, in meters (output)
|
||
* Z : Calculated Geocentric Z coordinate, in meters (output)
|
||
*
|
||
*/
|
||
function geodeticToGeocentric(p, es, a) {
|
||
var Longitude = p.x;
|
||
var Latitude = p.y;
|
||
var Height = p.z ? p.z : 0; //Z value not always supplied
|
||
|
||
var Rn; /* Earth radius at location */
|
||
var Sin_Lat; /* Math.sin(Latitude) */
|
||
var Sin2_Lat; /* Square of Math.sin(Latitude) */
|
||
var Cos_Lat; /* Math.cos(Latitude) */
|
||
|
||
/*
|
||
** Don't blow up if Latitude is just a little out of the value
|
||
** range as it may just be a rounding issue. Also removed longitude
|
||
** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001.
|
||
*/
|
||
if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
|
||
Latitude = -HALF_PI;
|
||
} else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
|
||
Latitude = HALF_PI;
|
||
} else if (Latitude < -HALF_PI) {
|
||
/* Latitude out of range */
|
||
//..reportError('geocent:lat out of range:' + Latitude);
|
||
return { x: -Infinity, y: -Infinity, z: p.z };
|
||
} else if (Latitude > HALF_PI) {
|
||
/* Latitude out of range */
|
||
return { x: Infinity, y: Infinity, z: p.z };
|
||
}
|
||
|
||
if (Longitude > Math.PI) {
|
||
Longitude -= (2 * Math.PI);
|
||
}
|
||
Sin_Lat = Math.sin(Latitude);
|
||
Cos_Lat = Math.cos(Latitude);
|
||
Sin2_Lat = Sin_Lat * Sin_Lat;
|
||
Rn = a / (Math.sqrt(1.0e0 - es * Sin2_Lat));
|
||
return {
|
||
x: (Rn + Height) * Cos_Lat * Math.cos(Longitude),
|
||
y: (Rn + Height) * Cos_Lat * Math.sin(Longitude),
|
||
z: ((Rn * (1 - es)) + Height) * Sin_Lat
|
||
};
|
||
} // cs_geodetic_to_geocentric()
|
||
|
||
function geocentricToGeodetic(p, es, a, b) {
|
||
/* local defintions and variables */
|
||
/* end-criterium of loop, accuracy of sin(Latitude) */
|
||
var genau = 1e-12;
|
||
var genau2 = (genau * genau);
|
||
var maxiter = 30;
|
||
|
||
var P; /* distance between semi-minor axis and location */
|
||
var RR; /* distance between center and location */
|
||
var CT; /* sin of geocentric latitude */
|
||
var ST; /* cos of geocentric latitude */
|
||
var RX;
|
||
var RK;
|
||
var RN; /* Earth radius at location */
|
||
var CPHI0; /* cos of start or old geodetic latitude in iterations */
|
||
var SPHI0; /* sin of start or old geodetic latitude in iterations */
|
||
var CPHI; /* cos of searched geodetic latitude */
|
||
var SPHI; /* sin of searched geodetic latitude */
|
||
var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
|
||
var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
|
||
|
||
var X = p.x;
|
||
var Y = p.y;
|
||
var Z = p.z ? p.z : 0.0; //Z value not always supplied
|
||
var Longitude;
|
||
var Latitude;
|
||
var Height;
|
||
|
||
P = Math.sqrt(X * X + Y * Y);
|
||
RR = Math.sqrt(X * X + Y * Y + Z * Z);
|
||
|
||
/* special cases for latitude and longitude */
|
||
if (P / a < genau) {
|
||
|
||
/* special case, if P=0. (X=0., Y=0.) */
|
||
Longitude = 0.0;
|
||
|
||
/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
|
||
* of ellipsoid (=center of mass), Latitude becomes PI/2 */
|
||
if (RR / a < genau) {
|
||
Latitude = HALF_PI;
|
||
Height = -b;
|
||
return {
|
||
x: p.x,
|
||
y: p.y,
|
||
z: p.z
|
||
};
|
||
}
|
||
} else {
|
||
/* ellipsoidal (geodetic) longitude
|
||
* interval: -PI < Longitude <= +PI */
|
||
Longitude = Math.atan2(Y, X);
|
||
}
|
||
|
||
/* --------------------------------------------------------------
|
||
* Following iterative algorithm was developped by
|
||
* "Institut for Erdmessung", University of Hannover, July 1988.
|
||
* Internet: www.ife.uni-hannover.de
|
||
* Iterative computation of CPHI,SPHI and Height.
|
||
* Iteration of CPHI and SPHI to 10**-12 radian resp.
|
||
* 2*10**-7 arcsec.
|
||
* --------------------------------------------------------------
|
||
*/
|
||
CT = Z / RR;
|
||
ST = P / RR;
|
||
RX = 1.0 / Math.sqrt(1.0 - es * (2.0 - es) * ST * ST);
|
||
CPHI0 = ST * (1.0 - es) * RX;
|
||
SPHI0 = CT * RX;
|
||
iter = 0;
|
||
|
||
/* loop to find sin(Latitude) resp. Latitude
|
||
* until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
|
||
do {
|
||
iter++;
|
||
RN = a / Math.sqrt(1.0 - es * SPHI0 * SPHI0);
|
||
|
||
/* ellipsoidal (geodetic) height */
|
||
Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - es * SPHI0 * SPHI0);
|
||
|
||
RK = es * RN / (RN + Height);
|
||
RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
|
||
CPHI = ST * (1.0 - RK) * RX;
|
||
SPHI = CT * RX;
|
||
SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
|
||
CPHI0 = CPHI;
|
||
SPHI0 = SPHI;
|
||
}
|
||
while (SDPHI * SDPHI > genau2 && iter < maxiter);
|
||
|
||
/* ellipsoidal (geodetic) latitude */
|
||
Latitude = Math.atan(SPHI / Math.abs(CPHI));
|
||
return {
|
||
x: Longitude,
|
||
y: Latitude,
|
||
z: Height
|
||
};
|
||
} // cs_geocentric_to_geodetic()
|
||
|
||
/****************************************************************/
|
||
// pj_geocentic_to_wgs84( p )
|
||
// p = point to transform in geocentric coordinates (x,y,z)
|
||
|
||
|
||
/** point object, nothing fancy, just allows values to be
|
||
passed back and forth by reference rather than by value.
|
||
Other point classes may be used as long as they have
|
||
x and y properties, which will get modified in the transform method.
|
||
*/
|
||
function geocentricToWgs84(p, datum_type, datum_params) {
|
||
|
||
if (datum_type === PJD_3PARAM) {
|
||
// if( x[io] === HUGE_VAL )
|
||
// continue;
|
||
return {
|
||
x: p.x + datum_params[0],
|
||
y: p.y + datum_params[1],
|
||
z: p.z + datum_params[2],
|
||
};
|
||
} else if (datum_type === PJD_7PARAM) {
|
||
var Dx_BF = datum_params[0];
|
||
var Dy_BF = datum_params[1];
|
||
var Dz_BF = datum_params[2];
|
||
var Rx_BF = datum_params[3];
|
||
var Ry_BF = datum_params[4];
|
||
var Rz_BF = datum_params[5];
|
||
var M_BF = datum_params[6];
|
||
// if( x[io] === HUGE_VAL )
|
||
// continue;
|
||
return {
|
||
x: M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF,
|
||
y: M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF,
|
||
z: M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF
|
||
};
|
||
}
|
||
} // cs_geocentric_to_wgs84
|
||
|
||
/****************************************************************/
|
||
// pj_geocentic_from_wgs84()
|
||
// coordinate system definition,
|
||
// point to transform in geocentric coordinates (x,y,z)
|
||
function geocentricFromWgs84(p, datum_type, datum_params) {
|
||
|
||
if (datum_type === PJD_3PARAM) {
|
||
//if( x[io] === HUGE_VAL )
|
||
// continue;
|
||
return {
|
||
x: p.x - datum_params[0],
|
||
y: p.y - datum_params[1],
|
||
z: p.z - datum_params[2],
|
||
};
|
||
|
||
} else if (datum_type === PJD_7PARAM) {
|
||
var Dx_BF = datum_params[0];
|
||
var Dy_BF = datum_params[1];
|
||
var Dz_BF = datum_params[2];
|
||
var Rx_BF = datum_params[3];
|
||
var Ry_BF = datum_params[4];
|
||
var Rz_BF = datum_params[5];
|
||
var M_BF = datum_params[6];
|
||
var x_tmp = (p.x - Dx_BF) / M_BF;
|
||
var y_tmp = (p.y - Dy_BF) / M_BF;
|
||
var z_tmp = (p.z - Dz_BF) / M_BF;
|
||
//if( x[io] === HUGE_VAL )
|
||
// continue;
|
||
|
||
return {
|
||
x: x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp,
|
||
y: -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp,
|
||
z: Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp
|
||
};
|
||
} //cs_geocentric_from_wgs84()
|
||
}
|
||
|
||
function checkParams(type) {
|
||
return (type === PJD_3PARAM || type === PJD_7PARAM);
|
||
}
|
||
|
||
var datum_transform = function(source, dest, point) {
|
||
// Short cut if the datums are identical.
|
||
if (compareDatums(source, dest)) {
|
||
return point; // in this case, zero is sucess,
|
||
// whereas cs_compare_datums returns 1 to indicate TRUE
|
||
// confusing, should fix this
|
||
}
|
||
|
||
// Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
|
||
if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
|
||
return point;
|
||
}
|
||
|
||
// If this datum requires grid shifts, then apply it to geodetic coordinates.
|
||
var source_a = source.a;
|
||
var source_es = source.es;
|
||
if (source.datum_type === PJD_GRIDSHIFT) {
|
||
var gridShiftCode = applyGridShift(source, false, point);
|
||
if (gridShiftCode !== 0) {
|
||
return undefined;
|
||
}
|
||
source_a = SRS_WGS84_SEMIMAJOR;
|
||
source_es = SRS_WGS84_ESQUARED;
|
||
}
|
||
|
||
var dest_a = dest.a;
|
||
var dest_b = dest.b;
|
||
var dest_es = dest.es;
|
||
if (dest.datum_type === PJD_GRIDSHIFT) {
|
||
dest_a = SRS_WGS84_SEMIMAJOR;
|
||
dest_b = SRS_WGS84_SEMIMINOR;
|
||
dest_es = SRS_WGS84_ESQUARED;
|
||
}
|
||
|
||
// Do we need to go through geocentric coordinates?
|
||
if (source_es === dest_es && source_a === dest_a && !checkParams(source.datum_type) && !checkParams(dest.datum_type)) {
|
||
return point;
|
||
}
|
||
|
||
// Convert to geocentric coordinates.
|
||
point = geodeticToGeocentric(point, source_es, source_a);
|
||
// Convert between datums
|
||
if (checkParams(source.datum_type)) {
|
||
point = geocentricToWgs84(point, source.datum_type, source.datum_params);
|
||
}
|
||
if (checkParams(dest.datum_type)) {
|
||
point = geocentricFromWgs84(point, dest.datum_type, dest.datum_params);
|
||
}
|
||
point = geocentricToGeodetic(point, dest_es, dest_a, dest_b);
|
||
|
||
if (dest.datum_type === PJD_GRIDSHIFT) {
|
||
var destGridShiftResult = applyGridShift(dest, true, point);
|
||
if (destGridShiftResult !== 0) {
|
||
return undefined;
|
||
}
|
||
}
|
||
|
||
return point;
|
||
};
|
||
|
||
function applyGridShift(source, inverse, point) {
|
||
if (source.grids === null || source.grids.length === 0) {
|
||
console.log('Grid shift grids not found');
|
||
return -1;
|
||
}
|
||
var input = {x: -point.x, y: point.y};
|
||
var output = {x: Number.NaN, y: Number.NaN};
|
||
var attemptedGrids = [];
|
||
for (var i = 0; i < source.grids.length; i++) {
|
||
var grid = source.grids[i];
|
||
attemptedGrids.push(grid.name);
|
||
if (grid.isNull) {
|
||
output = input;
|
||
break;
|
||
}
|
||
if (grid.grid === null) {
|
||
if (grid.mandatory) {
|
||
console.log("Unable to find mandatory grid '" + grid.name + "'");
|
||
return -1;
|
||
}
|
||
continue;
|
||
}
|
||
var subgrid = grid.grid.subgrids[0];
|
||
// skip tables that don't match our point at all
|
||
var epsilon = (Math.abs(subgrid.del[1]) + Math.abs(subgrid.del[0])) / 10000.0;
|
||
var minX = subgrid.ll[0] - epsilon;
|
||
var minY = subgrid.ll[1] - epsilon;
|
||
var maxX = subgrid.ll[0] + (subgrid.lim[0] - 1) * subgrid.del[0] + epsilon;
|
||
var maxY = subgrid.ll[1] + (subgrid.lim[1] - 1) * subgrid.del[1] + epsilon;
|
||
if (minY > input.y || minX > input.x || maxY < input.y || maxX < input.x ) {
|
||
continue;
|
||
}
|
||
output = applySubgridShift(input, inverse, subgrid);
|
||
if (!isNaN(output.x)) {
|
||
break;
|
||
}
|
||
}
|
||
if (isNaN(output.x)) {
|
||
console.log("Failed to find a grid shift table for location '"+
|
||
-input.x * R2D + " " + input.y * R2D + " tried: '" + attemptedGrids + "'");
|
||
return -1;
|
||
}
|
||
point.x = -output.x;
|
||
point.y = output.y;
|
||
return 0;
|
||
}
|
||
|
||
function applySubgridShift(pin, inverse, ct) {
|
||
var val = {x: Number.NaN, y: Number.NaN};
|
||
if (isNaN(pin.x)) { return val; }
|
||
var tb = {x: pin.x, y: pin.y};
|
||
tb.x -= ct.ll[0];
|
||
tb.y -= ct.ll[1];
|
||
tb.x = adjust_lon(tb.x - Math.PI) + Math.PI;
|
||
var t = nadInterpolate(tb, ct);
|
||
if (inverse) {
|
||
if (isNaN(t.x)) {
|
||
return val;
|
||
}
|
||
t.x = tb.x - t.x;
|
||
t.y = tb.y - t.y;
|
||
var i = 9, tol = 1e-12;
|
||
var dif, del;
|
||
do {
|
||
del = nadInterpolate(t, ct);
|
||
if (isNaN(del.x)) {
|
||
console.log("Inverse grid shift iteration failed, presumably at grid edge. Using first approximation.");
|
||
break;
|
||
}
|
||
dif = {x: tb.x - (del.x + t.x), y: tb.y - (del.y + t.y)};
|
||
t.x += dif.x;
|
||
t.y += dif.y;
|
||
} while (i-- && Math.abs(dif.x) > tol && Math.abs(dif.y) > tol);
|
||
if (i < 0) {
|
||
console.log("Inverse grid shift iterator failed to converge.");
|
||
return val;
|
||
}
|
||
val.x = adjust_lon(t.x + ct.ll[0]);
|
||
val.y = t.y + ct.ll[1];
|
||
} else {
|
||
if (!isNaN(t.x)) {
|
||
val.x = pin.x + t.x;
|
||
val.y = pin.y + t.y;
|
||
}
|
||
}
|
||
return val;
|
||
}
|
||
|
||
function nadInterpolate(pin, ct) {
|
||
var t = {x: pin.x / ct.del[0], y: pin.y / ct.del[1]};
|
||
var indx = {x: Math.floor(t.x), y: Math.floor(t.y)};
|
||
var frct = {x: t.x - 1.0 * indx.x, y: t.y - 1.0 * indx.y};
|
||
var val= {x: Number.NaN, y: Number.NaN};
|
||
var inx;
|
||
if (indx.x < 0 || indx.x >= ct.lim[0]) {
|
||
return val;
|
||
}
|
||
if (indx.y < 0 || indx.y >= ct.lim[1]) {
|
||
return val;
|
||
}
|
||
inx = (indx.y * ct.lim[0]) + indx.x;
|
||
var f00 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
|
||
inx++;
|
||
var f10= {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
|
||
inx += ct.lim[0];
|
||
var f11 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
|
||
inx--;
|
||
var f01 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
|
||
var m11 = frct.x * frct.y, m10 = frct.x * (1.0 - frct.y),
|
||
m00 = (1.0 - frct.x) * (1.0 - frct.y), m01 = (1.0 - frct.x) * frct.y;
|
||
val.x = (m00 * f00.x + m10 * f10.x + m01 * f01.x + m11 * f11.x);
|
||
val.y = (m00 * f00.y + m10 * f10.y + m01 * f01.y + m11 * f11.y);
|
||
return val;
|
||
}
|
||
|
||
var adjust_axis = function(crs, denorm, point) {
|
||
var xin = point.x,
|
||
yin = point.y,
|
||
zin = point.z || 0.0;
|
||
var v, t, i;
|
||
var out = {};
|
||
for (i = 0; i < 3; i++) {
|
||
if (denorm && i === 2 && point.z === undefined) {
|
||
continue;
|
||
}
|
||
if (i === 0) {
|
||
v = xin;
|
||
if ("ew".indexOf(crs.axis[i]) !== -1) {
|
||
t = 'x';
|
||
} else {
|
||
t = 'y';
|
||
}
|
||
|
||
}
|
||
else if (i === 1) {
|
||
v = yin;
|
||
if ("ns".indexOf(crs.axis[i]) !== -1) {
|
||
t = 'y';
|
||
} else {
|
||
t = 'x';
|
||
}
|
||
}
|
||
else {
|
||
v = zin;
|
||
t = 'z';
|
||
}
|
||
switch (crs.axis[i]) {
|
||
case 'e':
|
||
out[t] = v;
|
||
break;
|
||
case 'w':
|
||
out[t] = -v;
|
||
break;
|
||
case 'n':
|
||
out[t] = v;
|
||
break;
|
||
case 's':
|
||
out[t] = -v;
|
||
break;
|
||
case 'u':
|
||
if (point[t] !== undefined) {
|
||
out.z = v;
|
||
}
|
||
break;
|
||
case 'd':
|
||
if (point[t] !== undefined) {
|
||
out.z = -v;
|
||
}
|
||
break;
|
||
default:
|
||
//console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
|
||
return null;
|
||
}
|
||
}
|
||
return out;
|
||
};
|
||
|
||
var toPoint = function (array){
|
||
var out = {
|
||
x: array[0],
|
||
y: array[1]
|
||
};
|
||
if (array.length>2) {
|
||
out.z = array[2];
|
||
}
|
||
if (array.length>3) {
|
||
out.m = array[3];
|
||
}
|
||
return out;
|
||
};
|
||
|
||
var checkSanity = function (point) {
|
||
checkCoord(point.x);
|
||
checkCoord(point.y);
|
||
};
|
||
function checkCoord(num) {
|
||
if (typeof Number.isFinite === 'function') {
|
||
if (Number.isFinite(num)) {
|
||
return;
|
||
}
|
||
throw new TypeError('coordinates must be finite numbers');
|
||
}
|
||
if (typeof num !== 'number' || num !== num || !isFinite(num)) {
|
||
throw new TypeError('coordinates must be finite numbers');
|
||
}
|
||
}
|
||
|
||
function checkNotWGS(source, dest) {
|
||
return (
|
||
(source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM || source.datum.datum_type === PJD_GRIDSHIFT) && dest.datumCode !== 'WGS84') ||
|
||
((dest.datum.datum_type === PJD_3PARAM || dest.datum.datum_type === PJD_7PARAM || dest.datum.datum_type === PJD_GRIDSHIFT) && source.datumCode !== 'WGS84');
|
||
}
|
||
|
||
function transform(source, dest, point, enforceAxis) {
|
||
var wgs84;
|
||
if (Array.isArray(point)) {
|
||
point = toPoint(point);
|
||
} else {
|
||
// Clone the point object so inputs don't get modified
|
||
point = {
|
||
x: point.x,
|
||
y: point.y,
|
||
z: point.z,
|
||
m: point.m
|
||
};
|
||
}
|
||
var hasZ = point.z !== undefined;
|
||
checkSanity(point);
|
||
// Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
|
||
if (source.datum && dest.datum && checkNotWGS(source, dest)) {
|
||
wgs84 = new Projection('WGS84');
|
||
point = transform(source, wgs84, point, enforceAxis);
|
||
source = wgs84;
|
||
}
|
||
// DGR, 2010/11/12
|
||
if (enforceAxis && source.axis !== 'enu') {
|
||
point = adjust_axis(source, false, point);
|
||
}
|
||
// Transform source points to long/lat, if they aren't already.
|
||
if (source.projName === 'longlat') {
|
||
point = {
|
||
x: point.x * D2R,
|
||
y: point.y * D2R,
|
||
z: point.z || 0
|
||
};
|
||
} else {
|
||
if (source.to_meter) {
|
||
point = {
|
||
x: point.x * source.to_meter,
|
||
y: point.y * source.to_meter,
|
||
z: point.z || 0
|
||
};
|
||
}
|
||
point = source.inverse(point); // Convert Cartesian to longlat
|
||
if (!point) {
|
||
return;
|
||
}
|
||
}
|
||
// Adjust for the prime meridian if necessary
|
||
if (source.from_greenwich) {
|
||
point.x += source.from_greenwich;
|
||
}
|
||
|
||
// Convert datums if needed, and if possible.
|
||
point = datum_transform(source.datum, dest.datum, point);
|
||
if (!point) {
|
||
return;
|
||
}
|
||
|
||
// Adjust for the prime meridian if necessary
|
||
if (dest.from_greenwich) {
|
||
point = {
|
||
x: point.x - dest.from_greenwich,
|
||
y: point.y,
|
||
z: point.z || 0
|
||
};
|
||
}
|
||
|
||
if (dest.projName === 'longlat') {
|
||
// convert radians to decimal degrees
|
||
point = {
|
||
x: point.x * R2D,
|
||
y: point.y * R2D,
|
||
z: point.z || 0
|
||
};
|
||
} else { // else project
|
||
point = dest.forward(point);
|
||
if (dest.to_meter) {
|
||
point = {
|
||
x: point.x / dest.to_meter,
|
||
y: point.y / dest.to_meter,
|
||
z: point.z || 0
|
||
};
|
||
}
|
||
}
|
||
|
||
// DGR, 2010/11/12
|
||
if (enforceAxis && dest.axis !== 'enu') {
|
||
return adjust_axis(dest, true, point);
|
||
}
|
||
|
||
if (!hasZ) {
|
||
delete point.z;
|
||
}
|
||
return point;
|
||
}
|
||
|
||
var wgs84 = Projection('WGS84');
|
||
|
||
function transformer(from, to, coords, enforceAxis) {
|
||
var transformedArray, out, keys;
|
||
if (Array.isArray(coords)) {
|
||
transformedArray = transform(from, to, coords, enforceAxis) || {x: NaN, y: NaN};
|
||
if (coords.length > 2) {
|
||
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
|
||
if (typeof transformedArray.z === 'number') {
|
||
return [transformedArray.x, transformedArray.y, transformedArray.z].concat(coords.splice(3));
|
||
} else {
|
||
return [transformedArray.x, transformedArray.y, coords[2]].concat(coords.splice(3));
|
||
}
|
||
} else {
|
||
return [transformedArray.x, transformedArray.y].concat(coords.splice(2));
|
||
}
|
||
} else {
|
||
return [transformedArray.x, transformedArray.y];
|
||
}
|
||
} else {
|
||
out = transform(from, to, coords, enforceAxis);
|
||
keys = Object.keys(coords);
|
||
if (keys.length === 2) {
|
||
return out;
|
||
}
|
||
keys.forEach(function (key) {
|
||
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
|
||
if (key === 'x' || key === 'y' || key === 'z') {
|
||
return;
|
||
}
|
||
} else {
|
||
if (key === 'x' || key === 'y') {
|
||
return;
|
||
}
|
||
}
|
||
out[key] = coords[key];
|
||
});
|
||
return out;
|
||
}
|
||
}
|
||
|
||
function checkProj(item) {
|
||
if (item instanceof Projection) {
|
||
return item;
|
||
}
|
||
if (item.oProj) {
|
||
return item.oProj;
|
||
}
|
||
return Projection(item);
|
||
}
|
||
|
||
function proj4$1(fromProj, toProj, coord) {
|
||
fromProj = checkProj(fromProj);
|
||
var single = false;
|
||
var obj;
|
||
if (typeof toProj === 'undefined') {
|
||
toProj = fromProj;
|
||
fromProj = wgs84;
|
||
single = true;
|
||
} else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
|
||
coord = toProj;
|
||
toProj = fromProj;
|
||
fromProj = wgs84;
|
||
single = true;
|
||
}
|
||
toProj = checkProj(toProj);
|
||
if (coord) {
|
||
return transformer(fromProj, toProj, coord);
|
||
} else {
|
||
obj = {
|
||
forward: function (coords, enforceAxis) {
|
||
return transformer(fromProj, toProj, coords, enforceAxis);
|
||
},
|
||
inverse: function (coords, enforceAxis) {
|
||
return transformer(toProj, fromProj, coords, enforceAxis);
|
||
}
|
||
};
|
||
if (single) {
|
||
obj.oProj = toProj;
|
||
}
|
||
return obj;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* UTM zones are grouped, and assigned to one of a group of 6
|
||
* sets.
|
||
*
|
||
* {int} @private
|
||
*/
|
||
var NUM_100K_SETS = 6;
|
||
|
||
/**
|
||
* The column letters (for easting) of the lower left value, per
|
||
* set.
|
||
*
|
||
* {string} @private
|
||
*/
|
||
var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
|
||
|
||
/**
|
||
* The row letters (for northing) of the lower left value, per
|
||
* set.
|
||
*
|
||
* {string} @private
|
||
*/
|
||
var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
|
||
|
||
var A = 65; // A
|
||
var I = 73; // I
|
||
var O = 79; // O
|
||
var V = 86; // V
|
||
var Z = 90; // Z
|
||
var mgrs = {
|
||
forward: forward$1,
|
||
inverse: inverse$1,
|
||
toPoint: toPoint$1
|
||
};
|
||
/**
|
||
* Conversion of lat/lon to MGRS.
|
||
*
|
||
* @param {object} ll Object literal with lat and lon properties on a
|
||
* WGS84 ellipsoid.
|
||
* @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
|
||
* 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
|
||
* @return {string} the MGRS string for the given location and accuracy.
|
||
*/
|
||
function forward$1(ll, accuracy) {
|
||
accuracy = accuracy || 5; // default accuracy 1m
|
||
return encode(LLtoUTM({
|
||
lat: ll[1],
|
||
lon: ll[0]
|
||
}), accuracy);
|
||
}
|
||
|
||
/**
|
||
* Conversion of MGRS to lat/lon.
|
||
*
|
||
* @param {string} mgrs MGRS string.
|
||
* @return {array} An array with left (longitude), bottom (latitude), right
|
||
* (longitude) and top (latitude) values in WGS84, representing the
|
||
* bounding box for the provided MGRS reference.
|
||
*/
|
||
function inverse$1(mgrs) {
|
||
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
|
||
if (bbox.lat && bbox.lon) {
|
||
return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
|
||
}
|
||
return [bbox.left, bbox.bottom, bbox.right, bbox.top];
|
||
}
|
||
|
||
function toPoint$1(mgrs) {
|
||
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
|
||
if (bbox.lat && bbox.lon) {
|
||
return [bbox.lon, bbox.lat];
|
||
}
|
||
return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
|
||
}
|
||
/**
|
||
* Conversion from degrees to radians.
|
||
*
|
||
* @private
|
||
* @param {number} deg the angle in degrees.
|
||
* @return {number} the angle in radians.
|
||
*/
|
||
function degToRad(deg) {
|
||
return (deg * (Math.PI / 180.0));
|
||
}
|
||
|
||
/**
|
||
* Conversion from radians to degrees.
|
||
*
|
||
* @private
|
||
* @param {number} rad the angle in radians.
|
||
* @return {number} the angle in degrees.
|
||
*/
|
||
function radToDeg(rad) {
|
||
return (180.0 * (rad / Math.PI));
|
||
}
|
||
|
||
/**
|
||
* Converts a set of Longitude and Latitude co-ordinates to UTM
|
||
* using the WGS84 ellipsoid.
|
||
*
|
||
* @private
|
||
* @param {object} ll Object literal with lat and lon properties
|
||
* representing the WGS84 coordinate to be converted.
|
||
* @return {object} Object literal containing the UTM value with easting,
|
||
* northing, zoneNumber and zoneLetter properties, and an optional
|
||
* accuracy property in digits. Returns null if the conversion failed.
|
||
*/
|
||
function LLtoUTM(ll) {
|
||
var Lat = ll.lat;
|
||
var Long = ll.lon;
|
||
var a = 6378137.0; //ellip.radius;
|
||
var eccSquared = 0.00669438; //ellip.eccsq;
|
||
var k0 = 0.9996;
|
||
var LongOrigin;
|
||
var eccPrimeSquared;
|
||
var N, T, C, A, M;
|
||
var LatRad = degToRad(Lat);
|
||
var LongRad = degToRad(Long);
|
||
var LongOriginRad;
|
||
var ZoneNumber;
|
||
// (int)
|
||
ZoneNumber = Math.floor((Long + 180) / 6) + 1;
|
||
|
||
//Make sure the longitude 180.00 is in Zone 60
|
||
if (Long === 180) {
|
||
ZoneNumber = 60;
|
||
}
|
||
|
||
// Special zone for Norway
|
||
if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
|
||
ZoneNumber = 32;
|
||
}
|
||
|
||
// Special zones for Svalbard
|
||
if (Lat >= 72.0 && Lat < 84.0) {
|
||
if (Long >= 0.0 && Long < 9.0) {
|
||
ZoneNumber = 31;
|
||
}
|
||
else if (Long >= 9.0 && Long < 21.0) {
|
||
ZoneNumber = 33;
|
||
}
|
||
else if (Long >= 21.0 && Long < 33.0) {
|
||
ZoneNumber = 35;
|
||
}
|
||
else if (Long >= 33.0 && Long < 42.0) {
|
||
ZoneNumber = 37;
|
||
}
|
||
}
|
||
|
||
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
|
||
// in middle of
|
||
// zone
|
||
LongOriginRad = degToRad(LongOrigin);
|
||
|
||
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
|
||
|
||
N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
|
||
T = Math.tan(LatRad) * Math.tan(LatRad);
|
||
C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
|
||
A = Math.cos(LatRad) * (LongRad - LongOriginRad);
|
||
|
||
M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
|
||
|
||
var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
|
||
|
||
var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
|
||
if (Lat < 0.0) {
|
||
UTMNorthing += 10000000.0; //10000000 meter offset for
|
||
// southern hemisphere
|
||
}
|
||
|
||
return {
|
||
northing: Math.round(UTMNorthing),
|
||
easting: Math.round(UTMEasting),
|
||
zoneNumber: ZoneNumber,
|
||
zoneLetter: getLetterDesignator(Lat)
|
||
};
|
||
}
|
||
|
||
/**
|
||
* Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
|
||
* class where the Zone can be specified as a single string eg."60N" which
|
||
* is then broken down into the ZoneNumber and ZoneLetter.
|
||
*
|
||
* @private
|
||
* @param {object} utm An object literal with northing, easting, zoneNumber
|
||
* and zoneLetter properties. If an optional accuracy property is
|
||
* provided (in meters), a bounding box will be returned instead of
|
||
* latitude and longitude.
|
||
* @return {object} An object literal containing either lat and lon values
|
||
* (if no accuracy was provided), or top, right, bottom and left values
|
||
* for the bounding box calculated according to the provided accuracy.
|
||
* Returns null if the conversion failed.
|
||
*/
|
||
function UTMtoLL(utm) {
|
||
|
||
var UTMNorthing = utm.northing;
|
||
var UTMEasting = utm.easting;
|
||
var zoneLetter = utm.zoneLetter;
|
||
var zoneNumber = utm.zoneNumber;
|
||
// check the ZoneNummber is valid
|
||
if (zoneNumber < 0 || zoneNumber > 60) {
|
||
return null;
|
||
}
|
||
|
||
var k0 = 0.9996;
|
||
var a = 6378137.0; //ellip.radius;
|
||
var eccSquared = 0.00669438; //ellip.eccsq;
|
||
var eccPrimeSquared;
|
||
var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
|
||
var N1, T1, C1, R1, D, M;
|
||
var LongOrigin;
|
||
var mu, phi1Rad;
|
||
|
||
// remove 500,000 meter offset for longitude
|
||
var x = UTMEasting - 500000.0;
|
||
var y = UTMNorthing;
|
||
|
||
// We must know somehow if we are in the Northern or Southern
|
||
// hemisphere, this is the only time we use the letter So even
|
||
// if the Zone letter isn't exactly correct it should indicate
|
||
// the hemisphere correctly
|
||
if (zoneLetter < 'N') {
|
||
y -= 10000000.0; // remove 10,000,000 meter offset used
|
||
// for southern hemisphere
|
||
}
|
||
|
||
// There are 60 zones with zone 1 being at West -180 to -174
|
||
LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
|
||
// in middle of
|
||
// zone
|
||
|
||
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
|
||
|
||
M = y / k0;
|
||
mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
|
||
|
||
phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
|
||
// double phi1 = ProjMath.radToDeg(phi1Rad);
|
||
|
||
N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
|
||
T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
|
||
C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
|
||
R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
|
||
D = x / (N1 * k0);
|
||
|
||
var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
|
||
lat = radToDeg(lat);
|
||
|
||
var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
|
||
lon = LongOrigin + radToDeg(lon);
|
||
|
||
var result;
|
||
if (utm.accuracy) {
|
||
var topRight = UTMtoLL({
|
||
northing: utm.northing + utm.accuracy,
|
||
easting: utm.easting + utm.accuracy,
|
||
zoneLetter: utm.zoneLetter,
|
||
zoneNumber: utm.zoneNumber
|
||
});
|
||
result = {
|
||
top: topRight.lat,
|
||
right: topRight.lon,
|
||
bottom: lat,
|
||
left: lon
|
||
};
|
||
}
|
||
else {
|
||
result = {
|
||
lat: lat,
|
||
lon: lon
|
||
};
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* Calculates the MGRS letter designator for the given latitude.
|
||
*
|
||
* @private
|
||
* @param {number} lat The latitude in WGS84 to get the letter designator
|
||
* for.
|
||
* @return {char} The letter designator.
|
||
*/
|
||
function getLetterDesignator(lat) {
|
||
//This is here as an error flag to show that the Latitude is
|
||
//outside MGRS limits
|
||
var LetterDesignator = 'Z';
|
||
|
||
if ((84 >= lat) && (lat >= 72)) {
|
||
LetterDesignator = 'X';
|
||
}
|
||
else if ((72 > lat) && (lat >= 64)) {
|
||
LetterDesignator = 'W';
|
||
}
|
||
else if ((64 > lat) && (lat >= 56)) {
|
||
LetterDesignator = 'V';
|
||
}
|
||
else if ((56 > lat) && (lat >= 48)) {
|
||
LetterDesignator = 'U';
|
||
}
|
||
else if ((48 > lat) && (lat >= 40)) {
|
||
LetterDesignator = 'T';
|
||
}
|
||
else if ((40 > lat) && (lat >= 32)) {
|
||
LetterDesignator = 'S';
|
||
}
|
||
else if ((32 > lat) && (lat >= 24)) {
|
||
LetterDesignator = 'R';
|
||
}
|
||
else if ((24 > lat) && (lat >= 16)) {
|
||
LetterDesignator = 'Q';
|
||
}
|
||
else if ((16 > lat) && (lat >= 8)) {
|
||
LetterDesignator = 'P';
|
||
}
|
||
else if ((8 > lat) && (lat >= 0)) {
|
||
LetterDesignator = 'N';
|
||
}
|
||
else if ((0 > lat) && (lat >= -8)) {
|
||
LetterDesignator = 'M';
|
||
}
|
||
else if ((-8 > lat) && (lat >= -16)) {
|
||
LetterDesignator = 'L';
|
||
}
|
||
else if ((-16 > lat) && (lat >= -24)) {
|
||
LetterDesignator = 'K';
|
||
}
|
||
else if ((-24 > lat) && (lat >= -32)) {
|
||
LetterDesignator = 'J';
|
||
}
|
||
else if ((-32 > lat) && (lat >= -40)) {
|
||
LetterDesignator = 'H';
|
||
}
|
||
else if ((-40 > lat) && (lat >= -48)) {
|
||
LetterDesignator = 'G';
|
||
}
|
||
else if ((-48 > lat) && (lat >= -56)) {
|
||
LetterDesignator = 'F';
|
||
}
|
||
else if ((-56 > lat) && (lat >= -64)) {
|
||
LetterDesignator = 'E';
|
||
}
|
||
else if ((-64 > lat) && (lat >= -72)) {
|
||
LetterDesignator = 'D';
|
||
}
|
||
else if ((-72 > lat) && (lat >= -80)) {
|
||
LetterDesignator = 'C';
|
||
}
|
||
return LetterDesignator;
|
||
}
|
||
|
||
/**
|
||
* Encodes a UTM location as MGRS string.
|
||
*
|
||
* @private
|
||
* @param {object} utm An object literal with easting, northing,
|
||
* zoneLetter, zoneNumber
|
||
* @param {number} accuracy Accuracy in digits (1-5).
|
||
* @return {string} MGRS string for the given UTM location.
|
||
*/
|
||
function encode(utm, accuracy) {
|
||
// prepend with leading zeroes
|
||
var seasting = "00000" + utm.easting,
|
||
snorthing = "00000" + utm.northing;
|
||
|
||
return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
|
||
}
|
||
|
||
/**
|
||
* Get the two letter 100k designator for a given UTM easting,
|
||
* northing and zone number value.
|
||
*
|
||
* @private
|
||
* @param {number} easting
|
||
* @param {number} northing
|
||
* @param {number} zoneNumber
|
||
* @return the two letter 100k designator for the given UTM location.
|
||
*/
|
||
function get100kID(easting, northing, zoneNumber) {
|
||
var setParm = get100kSetForZone(zoneNumber);
|
||
var setColumn = Math.floor(easting / 100000);
|
||
var setRow = Math.floor(northing / 100000) % 20;
|
||
return getLetter100kID(setColumn, setRow, setParm);
|
||
}
|
||
|
||
/**
|
||
* Given a UTM zone number, figure out the MGRS 100K set it is in.
|
||
*
|
||
* @private
|
||
* @param {number} i An UTM zone number.
|
||
* @return {number} the 100k set the UTM zone is in.
|
||
*/
|
||
function get100kSetForZone(i) {
|
||
var setParm = i % NUM_100K_SETS;
|
||
if (setParm === 0) {
|
||
setParm = NUM_100K_SETS;
|
||
}
|
||
|
||
return setParm;
|
||
}
|
||
|
||
/**
|
||
* Get the two-letter MGRS 100k designator given information
|
||
* translated from the UTM northing, easting and zone number.
|
||
*
|
||
* @private
|
||
* @param {number} column the column index as it relates to the MGRS
|
||
* 100k set spreadsheet, created from the UTM easting.
|
||
* Values are 1-8.
|
||
* @param {number} row the row index as it relates to the MGRS 100k set
|
||
* spreadsheet, created from the UTM northing value. Values
|
||
* are from 0-19.
|
||
* @param {number} parm the set block, as it relates to the MGRS 100k set
|
||
* spreadsheet, created from the UTM zone. Values are from
|
||
* 1-60.
|
||
* @return two letter MGRS 100k code.
|
||
*/
|
||
function getLetter100kID(column, row, parm) {
|
||
// colOrigin and rowOrigin are the letters at the origin of the set
|
||
var index = parm - 1;
|
||
var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
|
||
var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
|
||
|
||
// colInt and rowInt are the letters to build to return
|
||
var colInt = colOrigin + column - 1;
|
||
var rowInt = rowOrigin + row;
|
||
var rollover = false;
|
||
|
||
if (colInt > Z) {
|
||
colInt = colInt - Z + A - 1;
|
||
rollover = true;
|
||
}
|
||
|
||
if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
|
||
colInt++;
|
||
}
|
||
|
||
if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
|
||
colInt++;
|
||
|
||
if (colInt === I) {
|
||
colInt++;
|
||
}
|
||
}
|
||
|
||
if (colInt > Z) {
|
||
colInt = colInt - Z + A - 1;
|
||
}
|
||
|
||
if (rowInt > V) {
|
||
rowInt = rowInt - V + A - 1;
|
||
rollover = true;
|
||
}
|
||
else {
|
||
rollover = false;
|
||
}
|
||
|
||
if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
|
||
rowInt++;
|
||
}
|
||
|
||
if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
|
||
rowInt++;
|
||
|
||
if (rowInt === I) {
|
||
rowInt++;
|
||
}
|
||
}
|
||
|
||
if (rowInt > V) {
|
||
rowInt = rowInt - V + A - 1;
|
||
}
|
||
|
||
var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
|
||
return twoLetter;
|
||
}
|
||
|
||
/**
|
||
* Decode the UTM parameters from a MGRS string.
|
||
*
|
||
* @private
|
||
* @param {string} mgrsString an UPPERCASE coordinate string is expected.
|
||
* @return {object} An object literal with easting, northing, zoneLetter,
|
||
* zoneNumber and accuracy (in meters) properties.
|
||
*/
|
||
function decode(mgrsString) {
|
||
|
||
if (mgrsString && mgrsString.length === 0) {
|
||
throw ("MGRSPoint coverting from nothing");
|
||
}
|
||
|
||
var length = mgrsString.length;
|
||
|
||
var hunK = null;
|
||
var sb = "";
|
||
var testChar;
|
||
var i = 0;
|
||
|
||
// get Zone number
|
||
while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
|
||
if (i >= 2) {
|
||
throw ("MGRSPoint bad conversion from: " + mgrsString);
|
||
}
|
||
sb += testChar;
|
||
i++;
|
||
}
|
||
|
||
var zoneNumber = parseInt(sb, 10);
|
||
|
||
if (i === 0 || i + 3 > length) {
|
||
// A good MGRS string has to be 4-5 digits long,
|
||
// ##AAA/#AAA at least.
|
||
throw ("MGRSPoint bad conversion from: " + mgrsString);
|
||
}
|
||
|
||
var zoneLetter = mgrsString.charAt(i++);
|
||
|
||
// Should we check the zone letter here? Why not.
|
||
if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
|
||
throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
|
||
}
|
||
|
||
hunK = mgrsString.substring(i, i += 2);
|
||
|
||
var set = get100kSetForZone(zoneNumber);
|
||
|
||
var east100k = getEastingFromChar(hunK.charAt(0), set);
|
||
var north100k = getNorthingFromChar(hunK.charAt(1), set);
|
||
|
||
// We have a bug where the northing may be 2000000 too low.
|
||
// How
|
||
// do we know when to roll over?
|
||
|
||
while (north100k < getMinNorthing(zoneLetter)) {
|
||
north100k += 2000000;
|
||
}
|
||
|
||
// calculate the char index for easting/northing separator
|
||
var remainder = length - i;
|
||
|
||
if (remainder % 2 !== 0) {
|
||
throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
|
||
}
|
||
|
||
var sep = remainder / 2;
|
||
|
||
var sepEasting = 0.0;
|
||
var sepNorthing = 0.0;
|
||
var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
|
||
if (sep > 0) {
|
||
accuracyBonus = 100000.0 / Math.pow(10, sep);
|
||
sepEastingString = mgrsString.substring(i, i + sep);
|
||
sepEasting = parseFloat(sepEastingString) * accuracyBonus;
|
||
sepNorthingString = mgrsString.substring(i + sep);
|
||
sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
|
||
}
|
||
|
||
easting = sepEasting + east100k;
|
||
northing = sepNorthing + north100k;
|
||
|
||
return {
|
||
easting: easting,
|
||
northing: northing,
|
||
zoneLetter: zoneLetter,
|
||
zoneNumber: zoneNumber,
|
||
accuracy: accuracyBonus
|
||
};
|
||
}
|
||
|
||
/**
|
||
* Given the first letter from a two-letter MGRS 100k zone, and given the
|
||
* MGRS table set for the zone number, figure out the easting value that
|
||
* should be added to the other, secondary easting value.
|
||
*
|
||
* @private
|
||
* @param {char} e The first letter from a two-letter MGRS 100´k zone.
|
||
* @param {number} set The MGRS table set for the zone number.
|
||
* @return {number} The easting value for the given letter and set.
|
||
*/
|
||
function getEastingFromChar(e, set) {
|
||
// colOrigin is the letter at the origin of the set for the
|
||
// column
|
||
var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
|
||
var eastingValue = 100000.0;
|
||
var rewindMarker = false;
|
||
|
||
while (curCol !== e.charCodeAt(0)) {
|
||
curCol++;
|
||
if (curCol === I) {
|
||
curCol++;
|
||
}
|
||
if (curCol === O) {
|
||
curCol++;
|
||
}
|
||
if (curCol > Z) {
|
||
if (rewindMarker) {
|
||
throw ("Bad character: " + e);
|
||
}
|
||
curCol = A;
|
||
rewindMarker = true;
|
||
}
|
||
eastingValue += 100000.0;
|
||
}
|
||
|
||
return eastingValue;
|
||
}
|
||
|
||
/**
|
||
* Given the second letter from a two-letter MGRS 100k zone, and given the
|
||
* MGRS table set for the zone number, figure out the northing value that
|
||
* should be added to the other, secondary northing value. You have to
|
||
* remember that Northings are determined from the equator, and the vertical
|
||
* cycle of letters mean a 2000000 additional northing meters. This happens
|
||
* approx. every 18 degrees of latitude. This method does *NOT* count any
|
||
* additional northings. You have to figure out how many 2000000 meters need
|
||
* to be added for the zone letter of the MGRS coordinate.
|
||
*
|
||
* @private
|
||
* @param {char} n Second letter of the MGRS 100k zone
|
||
* @param {number} set The MGRS table set number, which is dependent on the
|
||
* UTM zone number.
|
||
* @return {number} The northing value for the given letter and set.
|
||
*/
|
||
function getNorthingFromChar(n, set) {
|
||
|
||
if (n > 'V') {
|
||
throw ("MGRSPoint given invalid Northing " + n);
|
||
}
|
||
|
||
// rowOrigin is the letter at the origin of the set for the
|
||
// column
|
||
var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
|
||
var northingValue = 0.0;
|
||
var rewindMarker = false;
|
||
|
||
while (curRow !== n.charCodeAt(0)) {
|
||
curRow++;
|
||
if (curRow === I) {
|
||
curRow++;
|
||
}
|
||
if (curRow === O) {
|
||
curRow++;
|
||
}
|
||
// fixing a bug making whole application hang in this loop
|
||
// when 'n' is a wrong character
|
||
if (curRow > V) {
|
||
if (rewindMarker) { // making sure that this loop ends
|
||
throw ("Bad character: " + n);
|
||
}
|
||
curRow = A;
|
||
rewindMarker = true;
|
||
}
|
||
northingValue += 100000.0;
|
||
}
|
||
|
||
return northingValue;
|
||
}
|
||
|
||
/**
|
||
* The function getMinNorthing returns the minimum northing value of a MGRS
|
||
* zone.
|
||
*
|
||
* Ported from Geotrans' c Lattitude_Band_Value structure table.
|
||
*
|
||
* @private
|
||
* @param {char} zoneLetter The MGRS zone to get the min northing for.
|
||
* @return {number}
|
||
*/
|
||
function getMinNorthing(zoneLetter) {
|
||
var northing;
|
||
switch (zoneLetter) {
|
||
case 'C':
|
||
northing = 1100000.0;
|
||
break;
|
||
case 'D':
|
||
northing = 2000000.0;
|
||
break;
|
||
case 'E':
|
||
northing = 2800000.0;
|
||
break;
|
||
case 'F':
|
||
northing = 3700000.0;
|
||
break;
|
||
case 'G':
|
||
northing = 4600000.0;
|
||
break;
|
||
case 'H':
|
||
northing = 5500000.0;
|
||
break;
|
||
case 'J':
|
||
northing = 6400000.0;
|
||
break;
|
||
case 'K':
|
||
northing = 7300000.0;
|
||
break;
|
||
case 'L':
|
||
northing = 8200000.0;
|
||
break;
|
||
case 'M':
|
||
northing = 9100000.0;
|
||
break;
|
||
case 'N':
|
||
northing = 0.0;
|
||
break;
|
||
case 'P':
|
||
northing = 800000.0;
|
||
break;
|
||
case 'Q':
|
||
northing = 1700000.0;
|
||
break;
|
||
case 'R':
|
||
northing = 2600000.0;
|
||
break;
|
||
case 'S':
|
||
northing = 3500000.0;
|
||
break;
|
||
case 'T':
|
||
northing = 4400000.0;
|
||
break;
|
||
case 'U':
|
||
northing = 5300000.0;
|
||
break;
|
||
case 'V':
|
||
northing = 6200000.0;
|
||
break;
|
||
case 'W':
|
||
northing = 7000000.0;
|
||
break;
|
||
case 'X':
|
||
northing = 7900000.0;
|
||
break;
|
||
default:
|
||
northing = -1.0;
|
||
}
|
||
if (northing >= 0.0) {
|
||
return northing;
|
||
}
|
||
else {
|
||
throw ("Invalid zone letter: " + zoneLetter);
|
||
}
|
||
|
||
}
|
||
|
||
function Point(x, y, z) {
|
||
if (!(this instanceof Point)) {
|
||
return new Point(x, y, z);
|
||
}
|
||
if (Array.isArray(x)) {
|
||
this.x = x[0];
|
||
this.y = x[1];
|
||
this.z = x[2] || 0.0;
|
||
} else if(typeof x === 'object') {
|
||
this.x = x.x;
|
||
this.y = x.y;
|
||
this.z = x.z || 0.0;
|
||
} else if (typeof x === 'string' && typeof y === 'undefined') {
|
||
var coords = x.split(',');
|
||
this.x = parseFloat(coords[0], 10);
|
||
this.y = parseFloat(coords[1], 10);
|
||
this.z = parseFloat(coords[2], 10) || 0.0;
|
||
} else {
|
||
this.x = x;
|
||
this.y = y;
|
||
this.z = z || 0.0;
|
||
}
|
||
console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
|
||
}
|
||
|
||
Point.fromMGRS = function(mgrsStr) {
|
||
return new Point(toPoint$1(mgrsStr));
|
||
};
|
||
Point.prototype.toMGRS = function(accuracy) {
|
||
return forward$1([this.x, this.y], accuracy);
|
||
};
|
||
|
||
var C00 = 1;
|
||
var C02 = 0.25;
|
||
var C04 = 0.046875;
|
||
var C06 = 0.01953125;
|
||
var C08 = 0.01068115234375;
|
||
var C22 = 0.75;
|
||
var C44 = 0.46875;
|
||
var C46 = 0.01302083333333333333;
|
||
var C48 = 0.00712076822916666666;
|
||
var C66 = 0.36458333333333333333;
|
||
var C68 = 0.00569661458333333333;
|
||
var C88 = 0.3076171875;
|
||
|
||
var pj_enfn = function(es) {
|
||
var en = [];
|
||
en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
|
||
en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
|
||
var t = es * es;
|
||
en[2] = t * (C44 - es * (C46 + es * C48));
|
||
t *= es;
|
||
en[3] = t * (C66 - es * C68);
|
||
en[4] = t * es * C88;
|
||
return en;
|
||
};
|
||
|
||
var pj_mlfn = function(phi, sphi, cphi, en) {
|
||
cphi *= sphi;
|
||
sphi *= sphi;
|
||
return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
|
||
};
|
||
|
||
var MAX_ITER = 20;
|
||
|
||
var pj_inv_mlfn = function(arg, es, en) {
|
||
var k = 1 / (1 - es);
|
||
var phi = arg;
|
||
for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */
|
||
var s = Math.sin(phi);
|
||
var t = 1 - es * s * s;
|
||
//t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
|
||
//phi -= t * (t * Math.sqrt(t)) * k;
|
||
t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
|
||
phi -= t;
|
||
if (Math.abs(t) < EPSLN) {
|
||
return phi;
|
||
}
|
||
}
|
||
//..reportError("cass:pj_inv_mlfn: Convergence error");
|
||
return phi;
|
||
};
|
||
|
||
// Heavily based on this tmerc projection implementation
|
||
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/tmerc.js
|
||
|
||
function init$2() {
|
||
this.x0 = this.x0 !== undefined ? this.x0 : 0;
|
||
this.y0 = this.y0 !== undefined ? this.y0 : 0;
|
||
this.long0 = this.long0 !== undefined ? this.long0 : 0;
|
||
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
|
||
|
||
if (this.es) {
|
||
this.en = pj_enfn(this.es);
|
||
this.ml0 = pj_mlfn(this.lat0, Math.sin(this.lat0), Math.cos(this.lat0), this.en);
|
||
}
|
||
}
|
||
|
||
/**
|
||
Transverse Mercator Forward - long/lat to x/y
|
||
long/lat in radians
|
||
*/
|
||
function forward$2(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
var delta_lon = adjust_lon(lon - this.long0);
|
||
var con;
|
||
var x, y;
|
||
var sin_phi = Math.sin(lat);
|
||
var cos_phi = Math.cos(lat);
|
||
|
||
if (!this.es) {
|
||
var b = cos_phi * Math.sin(delta_lon);
|
||
|
||
if ((Math.abs(Math.abs(b) - 1)) < EPSLN) {
|
||
return (93);
|
||
}
|
||
else {
|
||
x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)) + this.x0;
|
||
y = cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - Math.pow(b, 2));
|
||
b = Math.abs(y);
|
||
|
||
if (b >= 1) {
|
||
if ((b - 1) > EPSLN) {
|
||
return (93);
|
||
}
|
||
else {
|
||
y = 0;
|
||
}
|
||
}
|
||
else {
|
||
y = Math.acos(y);
|
||
}
|
||
|
||
if (lat < 0) {
|
||
y = -y;
|
||
}
|
||
|
||
y = this.a * this.k0 * (y - this.lat0) + this.y0;
|
||
}
|
||
}
|
||
else {
|
||
var al = cos_phi * delta_lon;
|
||
var als = Math.pow(al, 2);
|
||
var c = this.ep2 * Math.pow(cos_phi, 2);
|
||
var cs = Math.pow(c, 2);
|
||
var tq = Math.abs(cos_phi) > EPSLN ? Math.tan(lat) : 0;
|
||
var t = Math.pow(tq, 2);
|
||
var ts = Math.pow(t, 2);
|
||
con = 1 - this.es * Math.pow(sin_phi, 2);
|
||
al = al / Math.sqrt(con);
|
||
var ml = pj_mlfn(lat, sin_phi, cos_phi, this.en);
|
||
|
||
x = this.a * (this.k0 * al * (1 +
|
||
als / 6 * (1 - t + c +
|
||
als / 20 * (5 - 18 * t + ts + 14 * c - 58 * t * c +
|
||
als / 42 * (61 + 179 * ts - ts * t - 479 * t))))) +
|
||
this.x0;
|
||
|
||
y = this.a * (this.k0 * (ml - this.ml0 +
|
||
sin_phi * delta_lon * al / 2 * (1 +
|
||
als / 12 * (5 - t + 9 * c + 4 * cs +
|
||
als / 30 * (61 + ts - 58 * t + 270 * c - 330 * t * c +
|
||
als / 56 * (1385 + 543 * ts - ts * t - 3111 * t)))))) +
|
||
this.y0;
|
||
}
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
|
||
return p;
|
||
}
|
||
|
||
/**
|
||
Transverse Mercator Inverse - x/y to long/lat
|
||
*/
|
||
function inverse$2(p) {
|
||
var con, phi;
|
||
var lat, lon;
|
||
var x = (p.x - this.x0) * (1 / this.a);
|
||
var y = (p.y - this.y0) * (1 / this.a);
|
||
|
||
if (!this.es) {
|
||
var f = Math.exp(x / this.k0);
|
||
var g = 0.5 * (f - 1 / f);
|
||
var temp = this.lat0 + y / this.k0;
|
||
var h = Math.cos(temp);
|
||
con = Math.sqrt((1 - Math.pow(h, 2)) / (1 + Math.pow(g, 2)));
|
||
lat = Math.asin(con);
|
||
|
||
if (y < 0) {
|
||
lat = -lat;
|
||
}
|
||
|
||
if ((g === 0) && (h === 0)) {
|
||
lon = 0;
|
||
}
|
||
else {
|
||
lon = adjust_lon(Math.atan2(g, h) + this.long0);
|
||
}
|
||
}
|
||
else { // ellipsoidal form
|
||
con = this.ml0 + y / this.k0;
|
||
phi = pj_inv_mlfn(con, this.es, this.en);
|
||
|
||
if (Math.abs(phi) < HALF_PI) {
|
||
var sin_phi = Math.sin(phi);
|
||
var cos_phi = Math.cos(phi);
|
||
var tan_phi = Math.abs(cos_phi) > EPSLN ? Math.tan(phi) : 0;
|
||
var c = this.ep2 * Math.pow(cos_phi, 2);
|
||
var cs = Math.pow(c, 2);
|
||
var t = Math.pow(tan_phi, 2);
|
||
var ts = Math.pow(t, 2);
|
||
con = 1 - this.es * Math.pow(sin_phi, 2);
|
||
var d = x * Math.sqrt(con) / this.k0;
|
||
var ds = Math.pow(d, 2);
|
||
con = con * tan_phi;
|
||
|
||
lat = phi - (con * ds / (1 - this.es)) * 0.5 * (1 -
|
||
ds / 12 * (5 + 3 * t - 9 * c * t + c - 4 * cs -
|
||
ds / 30 * (61 + 90 * t - 252 * c * t + 45 * ts + 46 * c -
|
||
ds / 56 * (1385 + 3633 * t + 4095 * ts + 1574 * ts * t))));
|
||
|
||
lon = adjust_lon(this.long0 + (d * (1 -
|
||
ds / 6 * (1 + 2 * t + c -
|
||
ds / 20 * (5 + 28 * t + 24 * ts + 8 * c * t + 6 * c -
|
||
ds / 42 * (61 + 662 * t + 1320 * ts + 720 * ts * t)))) / cos_phi));
|
||
}
|
||
else {
|
||
lat = HALF_PI * sign(y);
|
||
lon = 0;
|
||
}
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
|
||
return p;
|
||
}
|
||
|
||
var names$3 = ["Fast_Transverse_Mercator", "Fast Transverse Mercator"];
|
||
var tmerc = {
|
||
init: init$2,
|
||
forward: forward$2,
|
||
inverse: inverse$2,
|
||
names: names$3
|
||
};
|
||
|
||
var sinh = function(x) {
|
||
var r = Math.exp(x);
|
||
r = (r - 1 / r) / 2;
|
||
return r;
|
||
};
|
||
|
||
var hypot = function(x, y) {
|
||
x = Math.abs(x);
|
||
y = Math.abs(y);
|
||
var a = Math.max(x, y);
|
||
var b = Math.min(x, y) / (a ? a : 1);
|
||
|
||
return a * Math.sqrt(1 + Math.pow(b, 2));
|
||
};
|
||
|
||
var log1py = function(x) {
|
||
var y = 1 + x;
|
||
var z = y - 1;
|
||
|
||
return z === 0 ? x : x * Math.log(y) / z;
|
||
};
|
||
|
||
var asinhy = function(x) {
|
||
var y = Math.abs(x);
|
||
y = log1py(y * (1 + y / (hypot(1, y) + 1)));
|
||
|
||
return x < 0 ? -y : y;
|
||
};
|
||
|
||
var gatg = function(pp, B) {
|
||
var cos_2B = 2 * Math.cos(2 * B);
|
||
var i = pp.length - 1;
|
||
var h1 = pp[i];
|
||
var h2 = 0;
|
||
var h;
|
||
|
||
while (--i >= 0) {
|
||
h = -h2 + cos_2B * h1 + pp[i];
|
||
h2 = h1;
|
||
h1 = h;
|
||
}
|
||
|
||
return (B + h * Math.sin(2 * B));
|
||
};
|
||
|
||
var clens = function(pp, arg_r) {
|
||
var r = 2 * Math.cos(arg_r);
|
||
var i = pp.length - 1;
|
||
var hr1 = pp[i];
|
||
var hr2 = 0;
|
||
var hr;
|
||
|
||
while (--i >= 0) {
|
||
hr = -hr2 + r * hr1 + pp[i];
|
||
hr2 = hr1;
|
||
hr1 = hr;
|
||
}
|
||
|
||
return Math.sin(arg_r) * hr;
|
||
};
|
||
|
||
var cosh = function(x) {
|
||
var r = Math.exp(x);
|
||
r = (r + 1 / r) / 2;
|
||
return r;
|
||
};
|
||
|
||
var clens_cmplx = function(pp, arg_r, arg_i) {
|
||
var sin_arg_r = Math.sin(arg_r);
|
||
var cos_arg_r = Math.cos(arg_r);
|
||
var sinh_arg_i = sinh(arg_i);
|
||
var cosh_arg_i = cosh(arg_i);
|
||
var r = 2 * cos_arg_r * cosh_arg_i;
|
||
var i = -2 * sin_arg_r * sinh_arg_i;
|
||
var j = pp.length - 1;
|
||
var hr = pp[j];
|
||
var hi1 = 0;
|
||
var hr1 = 0;
|
||
var hi = 0;
|
||
var hr2;
|
||
var hi2;
|
||
|
||
while (--j >= 0) {
|
||
hr2 = hr1;
|
||
hi2 = hi1;
|
||
hr1 = hr;
|
||
hi1 = hi;
|
||
hr = -hr2 + r * hr1 - i * hi1 + pp[j];
|
||
hi = -hi2 + i * hr1 + r * hi1;
|
||
}
|
||
|
||
r = sin_arg_r * cosh_arg_i;
|
||
i = cos_arg_r * sinh_arg_i;
|
||
|
||
return [r * hr - i * hi, r * hi + i * hr];
|
||
};
|
||
|
||
// Heavily based on this etmerc projection implementation
|
||
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/etmerc.js
|
||
|
||
function init$3() {
|
||
if (!this.approx && (isNaN(this.es) || this.es <= 0)) {
|
||
throw new Error('Incorrect elliptical usage. Try using the +approx option in the proj string, or PROJECTION["Fast_Transverse_Mercator"] in the WKT.');
|
||
}
|
||
if (this.approx) {
|
||
// When '+approx' is set, use tmerc instead
|
||
tmerc.init.apply(this);
|
||
this.forward = tmerc.forward;
|
||
this.inverse = tmerc.inverse;
|
||
}
|
||
|
||
this.x0 = this.x0 !== undefined ? this.x0 : 0;
|
||
this.y0 = this.y0 !== undefined ? this.y0 : 0;
|
||
this.long0 = this.long0 !== undefined ? this.long0 : 0;
|
||
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
|
||
|
||
this.cgb = [];
|
||
this.cbg = [];
|
||
this.utg = [];
|
||
this.gtu = [];
|
||
|
||
var f = this.es / (1 + Math.sqrt(1 - this.es));
|
||
var n = f / (2 - f);
|
||
var np = n;
|
||
|
||
this.cgb[0] = n * (2 + n * (-2 / 3 + n * (-2 + n * (116 / 45 + n * (26 / 45 + n * (-2854 / 675 ))))));
|
||
this.cbg[0] = n * (-2 + n * ( 2 / 3 + n * ( 4 / 3 + n * (-82 / 45 + n * (32 / 45 + n * (4642 / 4725))))));
|
||
|
||
np = np * n;
|
||
this.cgb[1] = np * (7 / 3 + n * (-8 / 5 + n * (-227 / 45 + n * (2704 / 315 + n * (2323 / 945)))));
|
||
this.cbg[1] = np * (5 / 3 + n * (-16 / 15 + n * ( -13 / 9 + n * (904 / 315 + n * (-1522 / 945)))));
|
||
|
||
np = np * n;
|
||
this.cgb[2] = np * (56 / 15 + n * (-136 / 35 + n * (-1262 / 105 + n * (73814 / 2835))));
|
||
this.cbg[2] = np * (-26 / 15 + n * (34 / 21 + n * (8 / 5 + n * (-12686 / 2835))));
|
||
|
||
np = np * n;
|
||
this.cgb[3] = np * (4279 / 630 + n * (-332 / 35 + n * (-399572 / 14175)));
|
||
this.cbg[3] = np * (1237 / 630 + n * (-12 / 5 + n * ( -24832 / 14175)));
|
||
|
||
np = np * n;
|
||
this.cgb[4] = np * (4174 / 315 + n * (-144838 / 6237));
|
||
this.cbg[4] = np * (-734 / 315 + n * (109598 / 31185));
|
||
|
||
np = np * n;
|
||
this.cgb[5] = np * (601676 / 22275);
|
||
this.cbg[5] = np * (444337 / 155925);
|
||
|
||
np = Math.pow(n, 2);
|
||
this.Qn = this.k0 / (1 + n) * (1 + np * (1 / 4 + np * (1 / 64 + np / 256)));
|
||
|
||
this.utg[0] = n * (-0.5 + n * ( 2 / 3 + n * (-37 / 96 + n * ( 1 / 360 + n * (81 / 512 + n * (-96199 / 604800))))));
|
||
this.gtu[0] = n * (0.5 + n * (-2 / 3 + n * (5 / 16 + n * (41 / 180 + n * (-127 / 288 + n * (7891 / 37800))))));
|
||
|
||
this.utg[1] = np * (-1 / 48 + n * (-1 / 15 + n * (437 / 1440 + n * (-46 / 105 + n * (1118711 / 3870720)))));
|
||
this.gtu[1] = np * (13 / 48 + n * (-3 / 5 + n * (557 / 1440 + n * (281 / 630 + n * (-1983433 / 1935360)))));
|
||
|
||
np = np * n;
|
||
this.utg[2] = np * (-17 / 480 + n * (37 / 840 + n * (209 / 4480 + n * (-5569 / 90720 ))));
|
||
this.gtu[2] = np * (61 / 240 + n * (-103 / 140 + n * (15061 / 26880 + n * (167603 / 181440))));
|
||
|
||
np = np * n;
|
||
this.utg[3] = np * (-4397 / 161280 + n * (11 / 504 + n * (830251 / 7257600)));
|
||
this.gtu[3] = np * (49561 / 161280 + n * (-179 / 168 + n * (6601661 / 7257600)));
|
||
|
||
np = np * n;
|
||
this.utg[4] = np * (-4583 / 161280 + n * (108847 / 3991680));
|
||
this.gtu[4] = np * (34729 / 80640 + n * (-3418889 / 1995840));
|
||
|
||
np = np * n;
|
||
this.utg[5] = np * (-20648693 / 638668800);
|
||
this.gtu[5] = np * (212378941 / 319334400);
|
||
|
||
var Z = gatg(this.cbg, this.lat0);
|
||
this.Zb = -this.Qn * (Z + clens(this.gtu, 2 * Z));
|
||
}
|
||
|
||
function forward$3(p) {
|
||
var Ce = adjust_lon(p.x - this.long0);
|
||
var Cn = p.y;
|
||
|
||
Cn = gatg(this.cbg, Cn);
|
||
var sin_Cn = Math.sin(Cn);
|
||
var cos_Cn = Math.cos(Cn);
|
||
var sin_Ce = Math.sin(Ce);
|
||
var cos_Ce = Math.cos(Ce);
|
||
|
||
Cn = Math.atan2(sin_Cn, cos_Ce * cos_Cn);
|
||
Ce = Math.atan2(sin_Ce * cos_Cn, hypot(sin_Cn, cos_Cn * cos_Ce));
|
||
Ce = asinhy(Math.tan(Ce));
|
||
|
||
var tmp = clens_cmplx(this.gtu, 2 * Cn, 2 * Ce);
|
||
|
||
Cn = Cn + tmp[0];
|
||
Ce = Ce + tmp[1];
|
||
|
||
var x;
|
||
var y;
|
||
|
||
if (Math.abs(Ce) <= 2.623395162778) {
|
||
x = this.a * (this.Qn * Ce) + this.x0;
|
||
y = this.a * (this.Qn * Cn + this.Zb) + this.y0;
|
||
}
|
||
else {
|
||
x = Infinity;
|
||
y = Infinity;
|
||
}
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
|
||
return p;
|
||
}
|
||
|
||
function inverse$3(p) {
|
||
var Ce = (p.x - this.x0) * (1 / this.a);
|
||
var Cn = (p.y - this.y0) * (1 / this.a);
|
||
|
||
Cn = (Cn - this.Zb) / this.Qn;
|
||
Ce = Ce / this.Qn;
|
||
|
||
var lon;
|
||
var lat;
|
||
|
||
if (Math.abs(Ce) <= 2.623395162778) {
|
||
var tmp = clens_cmplx(this.utg, 2 * Cn, 2 * Ce);
|
||
|
||
Cn = Cn + tmp[0];
|
||
Ce = Ce + tmp[1];
|
||
Ce = Math.atan(sinh(Ce));
|
||
|
||
var sin_Cn = Math.sin(Cn);
|
||
var cos_Cn = Math.cos(Cn);
|
||
var sin_Ce = Math.sin(Ce);
|
||
var cos_Ce = Math.cos(Ce);
|
||
|
||
Cn = Math.atan2(sin_Cn * cos_Ce, hypot(sin_Ce, cos_Ce * cos_Cn));
|
||
Ce = Math.atan2(sin_Ce, cos_Ce * cos_Cn);
|
||
|
||
lon = adjust_lon(Ce + this.long0);
|
||
lat = gatg(this.cgb, Cn);
|
||
}
|
||
else {
|
||
lon = Infinity;
|
||
lat = Infinity;
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
|
||
return p;
|
||
}
|
||
|
||
var names$4 = ["Extended_Transverse_Mercator", "Extended Transverse Mercator", "etmerc", "Transverse_Mercator", "Transverse Mercator", "tmerc"];
|
||
var etmerc = {
|
||
init: init$3,
|
||
forward: forward$3,
|
||
inverse: inverse$3,
|
||
names: names$4
|
||
};
|
||
|
||
var adjust_zone = function(zone, lon) {
|
||
if (zone === undefined) {
|
||
zone = Math.floor((adjust_lon(lon) + Math.PI) * 30 / Math.PI) + 1;
|
||
|
||
if (zone < 0) {
|
||
return 0;
|
||
} else if (zone > 60) {
|
||
return 60;
|
||
}
|
||
}
|
||
return zone;
|
||
};
|
||
|
||
var dependsOn = 'etmerc';
|
||
function init$4() {
|
||
var zone = adjust_zone(this.zone, this.long0);
|
||
if (zone === undefined) {
|
||
throw new Error('unknown utm zone');
|
||
}
|
||
this.lat0 = 0;
|
||
this.long0 = ((6 * Math.abs(zone)) - 183) * D2R;
|
||
this.x0 = 500000;
|
||
this.y0 = this.utmSouth ? 10000000 : 0;
|
||
this.k0 = 0.9996;
|
||
|
||
etmerc.init.apply(this);
|
||
this.forward = etmerc.forward;
|
||
this.inverse = etmerc.inverse;
|
||
}
|
||
|
||
var names$5 = ["Universal Transverse Mercator System", "utm"];
|
||
var utm = {
|
||
init: init$4,
|
||
names: names$5,
|
||
dependsOn: dependsOn
|
||
};
|
||
|
||
var srat = function(esinp, exp) {
|
||
return (Math.pow((1 - esinp) / (1 + esinp), exp));
|
||
};
|
||
|
||
var MAX_ITER$1 = 20;
|
||
function init$6() {
|
||
var sphi = Math.sin(this.lat0);
|
||
var cphi = Math.cos(this.lat0);
|
||
cphi *= cphi;
|
||
this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
|
||
this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
|
||
this.phic0 = Math.asin(sphi / this.C);
|
||
this.ratexp = 0.5 * this.C * this.e;
|
||
this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
|
||
}
|
||
|
||
function forward$5(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
|
||
p.x = this.C * lon;
|
||
return p;
|
||
}
|
||
|
||
function inverse$5(p) {
|
||
var DEL_TOL = 1e-14;
|
||
var lon = p.x / this.C;
|
||
var lat = p.y;
|
||
var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
|
||
for (var i = MAX_ITER$1; i > 0; --i) {
|
||
lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI;
|
||
if (Math.abs(lat - p.y) < DEL_TOL) {
|
||
break;
|
||
}
|
||
p.y = lat;
|
||
}
|
||
/* convergence failed */
|
||
if (!i) {
|
||
return null;
|
||
}
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$7 = ["gauss"];
|
||
var gauss = {
|
||
init: init$6,
|
||
forward: forward$5,
|
||
inverse: inverse$5,
|
||
names: names$7
|
||
};
|
||
|
||
function init$5() {
|
||
gauss.init.apply(this);
|
||
if (!this.rc) {
|
||
return;
|
||
}
|
||
this.sinc0 = Math.sin(this.phic0);
|
||
this.cosc0 = Math.cos(this.phic0);
|
||
this.R2 = 2 * this.rc;
|
||
if (!this.title) {
|
||
this.title = "Oblique Stereographic Alternative";
|
||
}
|
||
}
|
||
|
||
function forward$4(p) {
|
||
var sinc, cosc, cosl, k;
|
||
p.x = adjust_lon(p.x - this.long0);
|
||
gauss.forward.apply(this, [p]);
|
||
sinc = Math.sin(p.y);
|
||
cosc = Math.cos(p.y);
|
||
cosl = Math.cos(p.x);
|
||
k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
|
||
p.x = k * cosc * Math.sin(p.x);
|
||
p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
|
||
p.x = this.a * p.x + this.x0;
|
||
p.y = this.a * p.y + this.y0;
|
||
return p;
|
||
}
|
||
|
||
function inverse$4(p) {
|
||
var sinc, cosc, lon, lat, rho;
|
||
p.x = (p.x - this.x0) / this.a;
|
||
p.y = (p.y - this.y0) / this.a;
|
||
|
||
p.x /= this.k0;
|
||
p.y /= this.k0;
|
||
if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) {
|
||
var c = 2 * Math.atan2(rho, this.R2);
|
||
sinc = Math.sin(c);
|
||
cosc = Math.cos(c);
|
||
lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
|
||
lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
|
||
}
|
||
else {
|
||
lat = this.phic0;
|
||
lon = 0;
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
gauss.inverse.apply(this, [p]);
|
||
p.x = adjust_lon(p.x + this.long0);
|
||
return p;
|
||
}
|
||
|
||
var names$6 = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative","Double_Stereographic"];
|
||
var sterea = {
|
||
init: init$5,
|
||
forward: forward$4,
|
||
inverse: inverse$4,
|
||
names: names$6
|
||
};
|
||
|
||
function ssfn_(phit, sinphi, eccen) {
|
||
sinphi *= eccen;
|
||
return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
|
||
}
|
||
|
||
function init$7() {
|
||
this.coslat0 = Math.cos(this.lat0);
|
||
this.sinlat0 = Math.sin(this.lat0);
|
||
if (this.sphere) {
|
||
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
|
||
this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
|
||
}
|
||
}
|
||
else {
|
||
if (Math.abs(this.coslat0) <= EPSLN) {
|
||
if (this.lat0 > 0) {
|
||
//North pole
|
||
//trace('stere:north pole');
|
||
this.con = 1;
|
||
}
|
||
else {
|
||
//South pole
|
||
//trace('stere:south pole');
|
||
this.con = -1;
|
||
}
|
||
}
|
||
this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
|
||
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
|
||
this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
|
||
}
|
||
this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
|
||
this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
|
||
this.cosX0 = Math.cos(this.X0);
|
||
this.sinX0 = Math.sin(this.X0);
|
||
}
|
||
}
|
||
|
||
// Stereographic forward equations--mapping lat,long to x,y
|
||
function forward$6(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var sinlat = Math.sin(lat);
|
||
var coslat = Math.cos(lat);
|
||
var A, X, sinX, cosX, ts, rh;
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
|
||
if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
|
||
//case of the origine point
|
||
//trace('stere:this is the origin point');
|
||
p.x = NaN;
|
||
p.y = NaN;
|
||
return p;
|
||
}
|
||
if (this.sphere) {
|
||
//trace('stere:sphere case');
|
||
A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
|
||
p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
|
||
p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
|
||
return p;
|
||
}
|
||
else {
|
||
X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
|
||
cosX = Math.cos(X);
|
||
sinX = Math.sin(X);
|
||
if (Math.abs(this.coslat0) <= EPSLN) {
|
||
ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
|
||
rh = 2 * this.a * this.k0 * ts / this.cons;
|
||
p.x = this.x0 + rh * Math.sin(lon - this.long0);
|
||
p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
|
||
//trace(p.toString());
|
||
return p;
|
||
}
|
||
else if (Math.abs(this.sinlat0) < EPSLN) {
|
||
//Eq
|
||
//trace('stere:equateur');
|
||
A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
|
||
p.y = A * sinX;
|
||
}
|
||
else {
|
||
//other case
|
||
//trace('stere:normal case');
|
||
A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
|
||
p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
|
||
}
|
||
p.x = A * cosX * Math.sin(dlon) + this.x0;
|
||
}
|
||
//trace(p.toString());
|
||
return p;
|
||
}
|
||
|
||
//* Stereographic inverse equations--mapping x,y to lat/long
|
||
function inverse$6(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
var lon, lat, ts, ce, Chi;
|
||
var rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
if (this.sphere) {
|
||
var c = 2 * Math.atan(rh / (2 * this.a * this.k0));
|
||
lon = this.long0;
|
||
lat = this.lat0;
|
||
if (rh <= EPSLN) {
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
|
||
if (Math.abs(this.coslat0) < EPSLN) {
|
||
if (this.lat0 > 0) {
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
|
||
}
|
||
else {
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
|
||
}
|
||
}
|
||
else {
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
|
||
}
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
else {
|
||
if (Math.abs(this.coslat0) <= EPSLN) {
|
||
if (rh <= EPSLN) {
|
||
lat = this.lat0;
|
||
lon = this.long0;
|
||
p.x = lon;
|
||
p.y = lat;
|
||
//trace(p.toString());
|
||
return p;
|
||
}
|
||
p.x *= this.con;
|
||
p.y *= this.con;
|
||
ts = rh * this.cons / (2 * this.a * this.k0);
|
||
lat = this.con * phi2z(this.e, ts);
|
||
lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y));
|
||
}
|
||
else {
|
||
ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
|
||
lon = this.long0;
|
||
if (rh <= EPSLN) {
|
||
Chi = this.X0;
|
||
}
|
||
else {
|
||
Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
|
||
}
|
||
lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
|
||
}
|
||
}
|
||
p.x = lon;
|
||
p.y = lat;
|
||
|
||
//trace(p.toString());
|
||
return p;
|
||
|
||
}
|
||
|
||
var names$8 = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"];
|
||
var stere = {
|
||
init: init$7,
|
||
forward: forward$6,
|
||
inverse: inverse$6,
|
||
names: names$8,
|
||
ssfn_: ssfn_
|
||
};
|
||
|
||
/*
|
||
references:
|
||
Formules et constantes pour le Calcul pour la
|
||
projection cylindrique conforme à axe oblique et pour la transformation entre
|
||
des systèmes de référence.
|
||
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
|
||
*/
|
||
|
||
function init$8() {
|
||
var phy0 = this.lat0;
|
||
this.lambda0 = this.long0;
|
||
var sinPhy0 = Math.sin(phy0);
|
||
var semiMajorAxis = this.a;
|
||
var invF = this.rf;
|
||
var flattening = 1 / invF;
|
||
var e2 = 2 * flattening - Math.pow(flattening, 2);
|
||
var e = this.e = Math.sqrt(e2);
|
||
this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
|
||
this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
|
||
this.b0 = Math.asin(sinPhy0 / this.alpha);
|
||
var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
|
||
var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
|
||
var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
|
||
this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
|
||
}
|
||
|
||
function forward$7(p) {
|
||
var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
|
||
var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
|
||
var S = -this.alpha * (Sa1 + Sa2) + this.K;
|
||
|
||
// spheric latitude
|
||
var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
|
||
|
||
// spheric longitude
|
||
var I = this.alpha * (p.x - this.lambda0);
|
||
|
||
// psoeudo equatorial rotation
|
||
var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
|
||
|
||
var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
|
||
|
||
p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
|
||
p.x = this.R * rotI + this.x0;
|
||
return p;
|
||
}
|
||
|
||
function inverse$7(p) {
|
||
var Y = p.x - this.x0;
|
||
var X = p.y - this.y0;
|
||
|
||
var rotI = Y / this.R;
|
||
var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
|
||
|
||
var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
|
||
var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
|
||
|
||
var lambda = this.lambda0 + I / this.alpha;
|
||
|
||
var S = 0;
|
||
var phy = b;
|
||
var prevPhy = -1000;
|
||
var iteration = 0;
|
||
while (Math.abs(phy - prevPhy) > 0.0000001) {
|
||
if (++iteration > 20) {
|
||
//...reportError("omercFwdInfinity");
|
||
return;
|
||
}
|
||
//S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
|
||
S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
|
||
prevPhy = phy;
|
||
phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
|
||
}
|
||
|
||
p.x = lambda;
|
||
p.y = phy;
|
||
return p;
|
||
}
|
||
|
||
var names$9 = ["somerc"];
|
||
var somerc = {
|
||
init: init$8,
|
||
forward: forward$7,
|
||
inverse: inverse$7,
|
||
names: names$9
|
||
};
|
||
|
||
var TOL = 1e-7;
|
||
|
||
function isTypeA(P) {
|
||
var typeAProjections = ['Hotine_Oblique_Mercator','Hotine_Oblique_Mercator_Azimuth_Natural_Origin'];
|
||
var projectionName = typeof P.PROJECTION === "object" ? Object.keys(P.PROJECTION)[0] : P.PROJECTION;
|
||
|
||
return 'no_uoff' in P || 'no_off' in P || typeAProjections.indexOf(projectionName) !== -1;
|
||
}
|
||
|
||
|
||
/* Initialize the Oblique Mercator projection
|
||
------------------------------------------*/
|
||
function init$9() {
|
||
var con, com, cosph0, D, F, H, L, sinph0, p, J, gamma = 0,
|
||
gamma0, lamc = 0, lam1 = 0, lam2 = 0, phi1 = 0, phi2 = 0, alpha_c = 0;
|
||
|
||
// only Type A uses the no_off or no_uoff property
|
||
// https://github.com/OSGeo/proj.4/issues/104
|
||
this.no_off = isTypeA(this);
|
||
this.no_rot = 'no_rot' in this;
|
||
|
||
var alp = false;
|
||
if ("alpha" in this) {
|
||
alp = true;
|
||
}
|
||
|
||
var gam = false;
|
||
if ("rectified_grid_angle" in this) {
|
||
gam = true;
|
||
}
|
||
|
||
if (alp) {
|
||
alpha_c = this.alpha;
|
||
}
|
||
|
||
if (gam) {
|
||
gamma = (this.rectified_grid_angle * D2R);
|
||
}
|
||
|
||
if (alp || gam) {
|
||
lamc = this.longc;
|
||
} else {
|
||
lam1 = this.long1;
|
||
phi1 = this.lat1;
|
||
lam2 = this.long2;
|
||
phi2 = this.lat2;
|
||
|
||
if (Math.abs(phi1 - phi2) <= TOL || (con = Math.abs(phi1)) <= TOL ||
|
||
Math.abs(con - HALF_PI) <= TOL || Math.abs(Math.abs(this.lat0) - HALF_PI) <= TOL ||
|
||
Math.abs(Math.abs(phi2) - HALF_PI) <= TOL) {
|
||
throw new Error();
|
||
}
|
||
}
|
||
|
||
var one_es = 1.0 - this.es;
|
||
com = Math.sqrt(one_es);
|
||
|
||
if (Math.abs(this.lat0) > EPSLN) {
|
||
sinph0 = Math.sin(this.lat0);
|
||
cosph0 = Math.cos(this.lat0);
|
||
con = 1 - this.es * sinph0 * sinph0;
|
||
this.B = cosph0 * cosph0;
|
||
this.B = Math.sqrt(1 + this.es * this.B * this.B / one_es);
|
||
this.A = this.B * this.k0 * com / con;
|
||
D = this.B * com / (cosph0 * Math.sqrt(con));
|
||
F = D * D -1;
|
||
|
||
if (F <= 0) {
|
||
F = 0;
|
||
} else {
|
||
F = Math.sqrt(F);
|
||
if (this.lat0 < 0) {
|
||
F = -F;
|
||
}
|
||
}
|
||
|
||
this.E = F += D;
|
||
this.E *= Math.pow(tsfnz(this.e, this.lat0, sinph0), this.B);
|
||
} else {
|
||
this.B = 1 / com;
|
||
this.A = this.k0;
|
||
this.E = D = F = 1;
|
||
}
|
||
|
||
if (alp || gam) {
|
||
if (alp) {
|
||
gamma0 = Math.asin(Math.sin(alpha_c) / D);
|
||
if (!gam) {
|
||
gamma = alpha_c;
|
||
}
|
||
} else {
|
||
gamma0 = gamma;
|
||
alpha_c = Math.asin(D * Math.sin(gamma0));
|
||
}
|
||
this.lam0 = lamc - Math.asin(0.5 * (F - 1 / F) * Math.tan(gamma0)) / this.B;
|
||
} else {
|
||
H = Math.pow(tsfnz(this.e, phi1, Math.sin(phi1)), this.B);
|
||
L = Math.pow(tsfnz(this.e, phi2, Math.sin(phi2)), this.B);
|
||
F = this.E / H;
|
||
p = (L - H) / (L + H);
|
||
J = this.E * this.E;
|
||
J = (J - L * H) / (J + L * H);
|
||
con = lam1 - lam2;
|
||
|
||
if (con < -Math.pi) {
|
||
lam2 -=TWO_PI;
|
||
} else if (con > Math.pi) {
|
||
lam2 += TWO_PI;
|
||
}
|
||
|
||
this.lam0 = adjust_lon(0.5 * (lam1 + lam2) - Math.atan(J * Math.tan(0.5 * this.B * (lam1 - lam2)) / p) / this.B);
|
||
gamma0 = Math.atan(2 * Math.sin(this.B * adjust_lon(lam1 - this.lam0)) / (F - 1 / F));
|
||
gamma = alpha_c = Math.asin(D * Math.sin(gamma0));
|
||
}
|
||
|
||
this.singam = Math.sin(gamma0);
|
||
this.cosgam = Math.cos(gamma0);
|
||
this.sinrot = Math.sin(gamma);
|
||
this.cosrot = Math.cos(gamma);
|
||
|
||
this.rB = 1 / this.B;
|
||
this.ArB = this.A * this.rB;
|
||
this.BrA = 1 / this.ArB;
|
||
if (this.no_off) {
|
||
this.u_0 = 0;
|
||
} else {
|
||
this.u_0 = Math.abs(this.ArB * Math.atan(Math.sqrt(D * D - 1) / Math.cos(alpha_c)));
|
||
|
||
if (this.lat0 < 0) {
|
||
this.u_0 = - this.u_0;
|
||
}
|
||
}
|
||
|
||
F = 0.5 * gamma0;
|
||
this.v_pole_n = this.ArB * Math.log(Math.tan(FORTPI - F));
|
||
this.v_pole_s = this.ArB * Math.log(Math.tan(FORTPI + F));
|
||
}
|
||
|
||
|
||
/* Oblique Mercator forward equations--mapping lat,long to x,y
|
||
----------------------------------------------------------*/
|
||
function forward$8(p) {
|
||
var coords = {};
|
||
var S, T, U, V, W, temp, u, v;
|
||
p.x = p.x - this.lam0;
|
||
|
||
if (Math.abs(Math.abs(p.y) - HALF_PI) > EPSLN) {
|
||
W = this.E / Math.pow(tsfnz(this.e, p.y, Math.sin(p.y)), this.B);
|
||
|
||
temp = 1 / W;
|
||
S = 0.5 * (W - temp);
|
||
T = 0.5 * (W + temp);
|
||
V = Math.sin(this.B * p.x);
|
||
U = (S * this.singam - V * this.cosgam) / T;
|
||
|
||
if (Math.abs(Math.abs(U) - 1.0) < EPSLN) {
|
||
throw new Error();
|
||
}
|
||
|
||
v = 0.5 * this.ArB * Math.log((1 - U)/(1 + U));
|
||
temp = Math.cos(this.B * p.x);
|
||
|
||
if (Math.abs(temp) < TOL) {
|
||
u = this.A * p.x;
|
||
} else {
|
||
u = this.ArB * Math.atan2((S * this.cosgam + V * this.singam), temp);
|
||
}
|
||
} else {
|
||
v = p.y > 0 ? this.v_pole_n : this.v_pole_s;
|
||
u = this.ArB * p.y;
|
||
}
|
||
|
||
if (this.no_rot) {
|
||
coords.x = u;
|
||
coords.y = v;
|
||
} else {
|
||
u -= this.u_0;
|
||
coords.x = v * this.cosrot + u * this.sinrot;
|
||
coords.y = u * this.cosrot - v * this.sinrot;
|
||
}
|
||
|
||
coords.x = (this.a * coords.x + this.x0);
|
||
coords.y = (this.a * coords.y + this.y0);
|
||
|
||
return coords;
|
||
}
|
||
|
||
function inverse$8(p) {
|
||
var u, v, Qp, Sp, Tp, Vp, Up;
|
||
var coords = {};
|
||
|
||
p.x = (p.x - this.x0) * (1.0 / this.a);
|
||
p.y = (p.y - this.y0) * (1.0 / this.a);
|
||
|
||
if (this.no_rot) {
|
||
v = p.y;
|
||
u = p.x;
|
||
} else {
|
||
v = p.x * this.cosrot - p.y * this.sinrot;
|
||
u = p.y * this.cosrot + p.x * this.sinrot + this.u_0;
|
||
}
|
||
|
||
Qp = Math.exp(-this.BrA * v);
|
||
Sp = 0.5 * (Qp - 1 / Qp);
|
||
Tp = 0.5 * (Qp + 1 / Qp);
|
||
Vp = Math.sin(this.BrA * u);
|
||
Up = (Vp * this.cosgam + Sp * this.singam) / Tp;
|
||
|
||
if (Math.abs(Math.abs(Up) - 1) < EPSLN) {
|
||
coords.x = 0;
|
||
coords.y = Up < 0 ? -HALF_PI : HALF_PI;
|
||
} else {
|
||
coords.y = this.E / Math.sqrt((1 + Up) / (1 - Up));
|
||
coords.y = phi2z(this.e, Math.pow(coords.y, 1 / this.B));
|
||
|
||
if (coords.y === Infinity) {
|
||
throw new Error();
|
||
}
|
||
|
||
coords.x = -this.rB * Math.atan2((Sp * this.cosgam - Vp * this.singam), Math.cos(this.BrA * u));
|
||
}
|
||
|
||
coords.x += this.lam0;
|
||
|
||
return coords;
|
||
}
|
||
|
||
var names$10 = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Two_Point_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "Oblique_Mercator", "omerc"];
|
||
var omerc = {
|
||
init: init$9,
|
||
forward: forward$8,
|
||
inverse: inverse$8,
|
||
names: names$10
|
||
};
|
||
|
||
function init$10() {
|
||
|
||
//double lat0; /* the reference latitude */
|
||
//double long0; /* the reference longitude */
|
||
//double lat1; /* first standard parallel */
|
||
//double lat2; /* second standard parallel */
|
||
//double r_maj; /* major axis */
|
||
//double r_min; /* minor axis */
|
||
//double false_east; /* x offset in meters */
|
||
//double false_north; /* y offset in meters */
|
||
|
||
//the above value can be set with proj4.defs
|
||
//example: proj4.defs("EPSG:2154","+proj=lcc +lat_1=49 +lat_2=44 +lat_0=46.5 +lon_0=3 +x_0=700000 +y_0=6600000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs");
|
||
|
||
if (!this.lat2) {
|
||
this.lat2 = this.lat1;
|
||
} //if lat2 is not defined
|
||
if (!this.k0) {
|
||
this.k0 = 1;
|
||
}
|
||
this.x0 = this.x0 || 0;
|
||
this.y0 = this.y0 || 0;
|
||
// Standard Parallels cannot be equal and on opposite sides of the equator
|
||
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
|
||
return;
|
||
}
|
||
|
||
var temp = this.b / this.a;
|
||
this.e = Math.sqrt(1 - temp * temp);
|
||
|
||
var sin1 = Math.sin(this.lat1);
|
||
var cos1 = Math.cos(this.lat1);
|
||
var ms1 = msfnz(this.e, sin1, cos1);
|
||
var ts1 = tsfnz(this.e, this.lat1, sin1);
|
||
|
||
var sin2 = Math.sin(this.lat2);
|
||
var cos2 = Math.cos(this.lat2);
|
||
var ms2 = msfnz(this.e, sin2, cos2);
|
||
var ts2 = tsfnz(this.e, this.lat2, sin2);
|
||
|
||
var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
|
||
|
||
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
|
||
this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
|
||
}
|
||
else {
|
||
this.ns = sin1;
|
||
}
|
||
if (isNaN(this.ns)) {
|
||
this.ns = sin1;
|
||
}
|
||
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
|
||
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
|
||
if (!this.title) {
|
||
this.title = "Lambert Conformal Conic";
|
||
}
|
||
}
|
||
|
||
// Lambert Conformal conic forward equations--mapping lat,long to x,y
|
||
// -----------------------------------------------------------------
|
||
function forward$9(p) {
|
||
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
// singular cases :
|
||
if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
|
||
lat = sign(lat) * (HALF_PI - 2 * EPSLN);
|
||
}
|
||
|
||
var con = Math.abs(Math.abs(lat) - HALF_PI);
|
||
var ts, rh1;
|
||
if (con > EPSLN) {
|
||
ts = tsfnz(this.e, lat, Math.sin(lat));
|
||
rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
|
||
}
|
||
else {
|
||
con = lat * this.ns;
|
||
if (con <= 0) {
|
||
return null;
|
||
}
|
||
rh1 = 0;
|
||
}
|
||
var theta = this.ns * adjust_lon(lon - this.long0);
|
||
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
|
||
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
|
||
|
||
return p;
|
||
}
|
||
|
||
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
|
||
// -----------------------------------------------------------------
|
||
function inverse$9(p) {
|
||
|
||
var rh1, con, ts;
|
||
var lat, lon;
|
||
var x = (p.x - this.x0) / this.k0;
|
||
var y = (this.rh - (p.y - this.y0) / this.k0);
|
||
if (this.ns > 0) {
|
||
rh1 = Math.sqrt(x * x + y * y);
|
||
con = 1;
|
||
}
|
||
else {
|
||
rh1 = -Math.sqrt(x * x + y * y);
|
||
con = -1;
|
||
}
|
||
var theta = 0;
|
||
if (rh1 !== 0) {
|
||
theta = Math.atan2((con * x), (con * y));
|
||
}
|
||
if ((rh1 !== 0) || (this.ns > 0)) {
|
||
con = 1 / this.ns;
|
||
ts = Math.pow((rh1 / (this.a * this.f0)), con);
|
||
lat = phi2z(this.e, ts);
|
||
if (lat === -9999) {
|
||
return null;
|
||
}
|
||
}
|
||
else {
|
||
lat = -HALF_PI;
|
||
}
|
||
lon = adjust_lon(theta / this.ns + this.long0);
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$11 = [
|
||
"Lambert Tangential Conformal Conic Projection",
|
||
"Lambert_Conformal_Conic",
|
||
"Lambert_Conformal_Conic_1SP",
|
||
"Lambert_Conformal_Conic_2SP",
|
||
"lcc",
|
||
"Lambert Conic Conformal (1SP)",
|
||
"Lambert Conic Conformal (2SP)"
|
||
];
|
||
|
||
var lcc = {
|
||
init: init$10,
|
||
forward: forward$9,
|
||
inverse: inverse$9,
|
||
names: names$11
|
||
};
|
||
|
||
function init$11() {
|
||
this.a = 6377397.155;
|
||
this.es = 0.006674372230614;
|
||
this.e = Math.sqrt(this.es);
|
||
if (!this.lat0) {
|
||
this.lat0 = 0.863937979737193;
|
||
}
|
||
if (!this.long0) {
|
||
this.long0 = 0.7417649320975901 - 0.308341501185665;
|
||
}
|
||
/* if scale not set default to 0.9999 */
|
||
if (!this.k0) {
|
||
this.k0 = 0.9999;
|
||
}
|
||
this.s45 = 0.785398163397448; /* 45 */
|
||
this.s90 = 2 * this.s45;
|
||
this.fi0 = this.lat0;
|
||
this.e2 = this.es;
|
||
this.e = Math.sqrt(this.e2);
|
||
this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
|
||
this.uq = 1.04216856380474;
|
||
this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
|
||
this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
|
||
this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
|
||
this.k1 = this.k0;
|
||
this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
|
||
this.s0 = 1.37008346281555;
|
||
this.n = Math.sin(this.s0);
|
||
this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
|
||
this.ad = this.s90 - this.uq;
|
||
}
|
||
|
||
/* ellipsoid */
|
||
/* calculate xy from lat/lon */
|
||
/* Constants, identical to inverse transform function */
|
||
function forward$10(p) {
|
||
var gfi, u, deltav, s, d, eps, ro;
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var delta_lon = adjust_lon(lon - this.long0);
|
||
/* Transformation */
|
||
gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
|
||
u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
|
||
deltav = -delta_lon * this.alfa;
|
||
s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
|
||
d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
|
||
eps = this.n * d;
|
||
ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
|
||
p.y = ro * Math.cos(eps) / 1;
|
||
p.x = ro * Math.sin(eps) / 1;
|
||
|
||
if (!this.czech) {
|
||
p.y *= -1;
|
||
p.x *= -1;
|
||
}
|
||
return (p);
|
||
}
|
||
|
||
/* calculate lat/lon from xy */
|
||
function inverse$10(p) {
|
||
var u, deltav, s, d, eps, ro, fi1;
|
||
var ok;
|
||
|
||
/* Transformation */
|
||
/* revert y, x*/
|
||
var tmp = p.x;
|
||
p.x = p.y;
|
||
p.y = tmp;
|
||
if (!this.czech) {
|
||
p.y *= -1;
|
||
p.x *= -1;
|
||
}
|
||
ro = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
eps = Math.atan2(p.y, p.x);
|
||
d = eps / Math.sin(this.s0);
|
||
s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
|
||
u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
|
||
deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
|
||
p.x = this.long0 - deltav / this.alfa;
|
||
fi1 = u;
|
||
ok = 0;
|
||
var iter = 0;
|
||
do {
|
||
p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
|
||
if (Math.abs(fi1 - p.y) < 0.0000000001) {
|
||
ok = 1;
|
||
}
|
||
fi1 = p.y;
|
||
iter += 1;
|
||
} while (ok === 0 && iter < 15);
|
||
if (iter >= 15) {
|
||
return null;
|
||
}
|
||
|
||
return (p);
|
||
}
|
||
|
||
var names$12 = ["Krovak", "krovak"];
|
||
var krovak = {
|
||
init: init$11,
|
||
forward: forward$10,
|
||
inverse: inverse$10,
|
||
names: names$12
|
||
};
|
||
|
||
var mlfn = function(e0, e1, e2, e3, phi) {
|
||
return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
|
||
};
|
||
|
||
var e0fn = function(x) {
|
||
return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
|
||
};
|
||
|
||
var e1fn = function(x) {
|
||
return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
|
||
};
|
||
|
||
var e2fn = function(x) {
|
||
return (0.05859375 * x * x * (1 + 0.75 * x));
|
||
};
|
||
|
||
var e3fn = function(x) {
|
||
return (x * x * x * (35 / 3072));
|
||
};
|
||
|
||
var gN = function(a, e, sinphi) {
|
||
var temp = e * sinphi;
|
||
return a / Math.sqrt(1 - temp * temp);
|
||
};
|
||
|
||
var adjust_lat = function(x) {
|
||
return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
|
||
};
|
||
|
||
var imlfn = function(ml, e0, e1, e2, e3) {
|
||
var phi;
|
||
var dphi;
|
||
|
||
phi = ml / e0;
|
||
for (var i = 0; i < 15; i++) {
|
||
dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
|
||
phi += dphi;
|
||
if (Math.abs(dphi) <= 0.0000000001) {
|
||
return phi;
|
||
}
|
||
}
|
||
|
||
//..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
|
||
return NaN;
|
||
};
|
||
|
||
function init$12() {
|
||
if (!this.sphere) {
|
||
this.e0 = e0fn(this.es);
|
||
this.e1 = e1fn(this.es);
|
||
this.e2 = e2fn(this.es);
|
||
this.e3 = e3fn(this.es);
|
||
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
|
||
}
|
||
}
|
||
|
||
/* Cassini forward equations--mapping lat,long to x,y
|
||
-----------------------------------------------------------------------*/
|
||
function forward$11(p) {
|
||
|
||
/* Forward equations
|
||
-----------------*/
|
||
var x, y;
|
||
var lam = p.x;
|
||
var phi = p.y;
|
||
lam = adjust_lon(lam - this.long0);
|
||
|
||
if (this.sphere) {
|
||
x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
|
||
y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
|
||
}
|
||
else {
|
||
//ellipsoid
|
||
var sinphi = Math.sin(phi);
|
||
var cosphi = Math.cos(phi);
|
||
var nl = gN(this.a, this.e, sinphi);
|
||
var tl = Math.tan(phi) * Math.tan(phi);
|
||
var al = lam * Math.cos(phi);
|
||
var asq = al * al;
|
||
var cl = this.es * cosphi * cosphi / (1 - this.es);
|
||
var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
|
||
|
||
x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
|
||
y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
|
||
|
||
|
||
}
|
||
|
||
p.x = x + this.x0;
|
||
p.y = y + this.y0;
|
||
return p;
|
||
}
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
function inverse$11(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
var x = p.x / this.a;
|
||
var y = p.y / this.a;
|
||
var phi, lam;
|
||
|
||
if (this.sphere) {
|
||
var dd = y + this.lat0;
|
||
phi = Math.asin(Math.sin(dd) * Math.cos(x));
|
||
lam = Math.atan2(Math.tan(x), Math.cos(dd));
|
||
}
|
||
else {
|
||
/* ellipsoid */
|
||
var ml1 = this.ml0 / this.a + y;
|
||
var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
|
||
if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
|
||
p.x = this.long0;
|
||
p.y = HALF_PI;
|
||
if (y < 0) {
|
||
p.y *= -1;
|
||
}
|
||
return p;
|
||
}
|
||
var nl1 = gN(this.a, this.e, Math.sin(phi1));
|
||
|
||
var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
|
||
var tl1 = Math.pow(Math.tan(phi1), 2);
|
||
var dl = x * this.a / nl1;
|
||
var dsq = dl * dl;
|
||
phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
|
||
lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
|
||
|
||
}
|
||
|
||
p.x = adjust_lon(lam + this.long0);
|
||
p.y = adjust_lat(phi);
|
||
return p;
|
||
|
||
}
|
||
|
||
var names$13 = ["Cassini", "Cassini_Soldner", "cass"];
|
||
var cass = {
|
||
init: init$12,
|
||
forward: forward$11,
|
||
inverse: inverse$11,
|
||
names: names$13
|
||
};
|
||
|
||
var qsfnz = function(eccent, sinphi) {
|
||
var con;
|
||
if (eccent > 1.0e-7) {
|
||
con = eccent * sinphi;
|
||
return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
|
||
}
|
||
else {
|
||
return (2 * sinphi);
|
||
}
|
||
};
|
||
|
||
/*
|
||
reference
|
||
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
|
||
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
|
||
*/
|
||
|
||
var S_POLE = 1;
|
||
|
||
var N_POLE = 2;
|
||
var EQUIT = 3;
|
||
var OBLIQ = 4;
|
||
|
||
/* Initialize the Lambert Azimuthal Equal Area projection
|
||
------------------------------------------------------*/
|
||
function init$13() {
|
||
var t = Math.abs(this.lat0);
|
||
if (Math.abs(t - HALF_PI) < EPSLN) {
|
||
this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
|
||
}
|
||
else if (Math.abs(t) < EPSLN) {
|
||
this.mode = this.EQUIT;
|
||
}
|
||
else {
|
||
this.mode = this.OBLIQ;
|
||
}
|
||
if (this.es > 0) {
|
||
var sinphi;
|
||
|
||
this.qp = qsfnz(this.e, 1);
|
||
this.mmf = 0.5 / (1 - this.es);
|
||
this.apa = authset(this.es);
|
||
switch (this.mode) {
|
||
case this.N_POLE:
|
||
this.dd = 1;
|
||
break;
|
||
case this.S_POLE:
|
||
this.dd = 1;
|
||
break;
|
||
case this.EQUIT:
|
||
this.rq = Math.sqrt(0.5 * this.qp);
|
||
this.dd = 1 / this.rq;
|
||
this.xmf = 1;
|
||
this.ymf = 0.5 * this.qp;
|
||
break;
|
||
case this.OBLIQ:
|
||
this.rq = Math.sqrt(0.5 * this.qp);
|
||
sinphi = Math.sin(this.lat0);
|
||
this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
|
||
this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
|
||
this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
|
||
this.ymf = (this.xmf = this.rq) / this.dd;
|
||
this.xmf *= this.dd;
|
||
break;
|
||
}
|
||
}
|
||
else {
|
||
if (this.mode === this.OBLIQ) {
|
||
this.sinph0 = Math.sin(this.lat0);
|
||
this.cosph0 = Math.cos(this.lat0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
|
||
-----------------------------------------------------------------------*/
|
||
function forward$12(p) {
|
||
|
||
/* Forward equations
|
||
-----------------*/
|
||
var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
|
||
var lam = p.x;
|
||
var phi = p.y;
|
||
|
||
lam = adjust_lon(lam - this.long0);
|
||
if (this.sphere) {
|
||
sinphi = Math.sin(phi);
|
||
cosphi = Math.cos(phi);
|
||
coslam = Math.cos(lam);
|
||
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
|
||
y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
|
||
if (y <= EPSLN) {
|
||
return null;
|
||
}
|
||
y = Math.sqrt(2 / y);
|
||
x = y * cosphi * Math.sin(lam);
|
||
y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
|
||
}
|
||
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
|
||
if (this.mode === this.N_POLE) {
|
||
coslam = -coslam;
|
||
}
|
||
if (Math.abs(phi + this.lat0) < EPSLN) {
|
||
return null;
|
||
}
|
||
y = FORTPI - phi * 0.5;
|
||
y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
|
||
x = y * Math.sin(lam);
|
||
y *= coslam;
|
||
}
|
||
}
|
||
else {
|
||
sinb = 0;
|
||
cosb = 0;
|
||
b = 0;
|
||
coslam = Math.cos(lam);
|
||
sinlam = Math.sin(lam);
|
||
sinphi = Math.sin(phi);
|
||
q = qsfnz(this.e, sinphi);
|
||
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
|
||
sinb = q / this.qp;
|
||
cosb = Math.sqrt(1 - sinb * sinb);
|
||
}
|
||
switch (this.mode) {
|
||
case this.OBLIQ:
|
||
b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
|
||
break;
|
||
case this.EQUIT:
|
||
b = 1 + cosb * coslam;
|
||
break;
|
||
case this.N_POLE:
|
||
b = HALF_PI + phi;
|
||
q = this.qp - q;
|
||
break;
|
||
case this.S_POLE:
|
||
b = phi - HALF_PI;
|
||
q = this.qp + q;
|
||
break;
|
||
}
|
||
if (Math.abs(b) < EPSLN) {
|
||
return null;
|
||
}
|
||
switch (this.mode) {
|
||
case this.OBLIQ:
|
||
case this.EQUIT:
|
||
b = Math.sqrt(2 / b);
|
||
if (this.mode === this.OBLIQ) {
|
||
y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
|
||
}
|
||
else {
|
||
y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
|
||
}
|
||
x = this.xmf * b * cosb * sinlam;
|
||
break;
|
||
case this.N_POLE:
|
||
case this.S_POLE:
|
||
if (q >= 0) {
|
||
x = (b = Math.sqrt(q)) * sinlam;
|
||
y = coslam * ((this.mode === this.S_POLE) ? b : -b);
|
||
}
|
||
else {
|
||
x = y = 0;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
p.x = this.a * x + this.x0;
|
||
p.y = this.a * y + this.y0;
|
||
return p;
|
||
}
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
function inverse$12(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
var x = p.x / this.a;
|
||
var y = p.y / this.a;
|
||
var lam, phi, cCe, sCe, q, rho, ab;
|
||
if (this.sphere) {
|
||
var cosz = 0,
|
||
rh, sinz = 0;
|
||
|
||
rh = Math.sqrt(x * x + y * y);
|
||
phi = rh * 0.5;
|
||
if (phi > 1) {
|
||
return null;
|
||
}
|
||
phi = 2 * Math.asin(phi);
|
||
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
|
||
sinz = Math.sin(phi);
|
||
cosz = Math.cos(phi);
|
||
}
|
||
switch (this.mode) {
|
||
case this.EQUIT:
|
||
phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
|
||
x *= sinz;
|
||
y = cosz * rh;
|
||
break;
|
||
case this.OBLIQ:
|
||
phi = (Math.abs(rh) <= EPSLN) ? this.lat0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
|
||
x *= sinz * this.cosph0;
|
||
y = (cosz - Math.sin(phi) * this.sinph0) * rh;
|
||
break;
|
||
case this.N_POLE:
|
||
y = -y;
|
||
phi = HALF_PI - phi;
|
||
break;
|
||
case this.S_POLE:
|
||
phi -= HALF_PI;
|
||
break;
|
||
}
|
||
lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
|
||
}
|
||
else {
|
||
ab = 0;
|
||
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
|
||
x /= this.dd;
|
||
y *= this.dd;
|
||
rho = Math.sqrt(x * x + y * y);
|
||
if (rho < EPSLN) {
|
||
p.x = this.long0;
|
||
p.y = this.lat0;
|
||
return p;
|
||
}
|
||
sCe = 2 * Math.asin(0.5 * rho / this.rq);
|
||
cCe = Math.cos(sCe);
|
||
x *= (sCe = Math.sin(sCe));
|
||
if (this.mode === this.OBLIQ) {
|
||
ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
|
||
q = this.qp * ab;
|
||
y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
|
||
}
|
||
else {
|
||
ab = y * sCe / rho;
|
||
q = this.qp * ab;
|
||
y = rho * cCe;
|
||
}
|
||
}
|
||
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
|
||
if (this.mode === this.N_POLE) {
|
||
y = -y;
|
||
}
|
||
q = (x * x + y * y);
|
||
if (!q) {
|
||
p.x = this.long0;
|
||
p.y = this.lat0;
|
||
return p;
|
||
}
|
||
ab = 1 - q / this.qp;
|
||
if (this.mode === this.S_POLE) {
|
||
ab = -ab;
|
||
}
|
||
}
|
||
lam = Math.atan2(x, y);
|
||
phi = authlat(Math.asin(ab), this.apa);
|
||
}
|
||
|
||
p.x = adjust_lon(this.long0 + lam);
|
||
p.y = phi;
|
||
return p;
|
||
}
|
||
|
||
/* determine latitude from authalic latitude */
|
||
var P00 = 0.33333333333333333333;
|
||
|
||
var P01 = 0.17222222222222222222;
|
||
var P02 = 0.10257936507936507936;
|
||
var P10 = 0.06388888888888888888;
|
||
var P11 = 0.06640211640211640211;
|
||
var P20 = 0.01641501294219154443;
|
||
|
||
function authset(es) {
|
||
var t;
|
||
var APA = [];
|
||
APA[0] = es * P00;
|
||
t = es * es;
|
||
APA[0] += t * P01;
|
||
APA[1] = t * P10;
|
||
t *= es;
|
||
APA[0] += t * P02;
|
||
APA[1] += t * P11;
|
||
APA[2] = t * P20;
|
||
return APA;
|
||
}
|
||
|
||
function authlat(beta, APA) {
|
||
var t = beta + beta;
|
||
return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
|
||
}
|
||
|
||
var names$14 = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
|
||
var laea = {
|
||
init: init$13,
|
||
forward: forward$12,
|
||
inverse: inverse$12,
|
||
names: names$14,
|
||
S_POLE: S_POLE,
|
||
N_POLE: N_POLE,
|
||
EQUIT: EQUIT,
|
||
OBLIQ: OBLIQ
|
||
};
|
||
|
||
var asinz = function(x) {
|
||
if (Math.abs(x) > 1) {
|
||
x = (x > 1) ? 1 : -1;
|
||
}
|
||
return Math.asin(x);
|
||
};
|
||
|
||
function init$14() {
|
||
|
||
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
|
||
return;
|
||
}
|
||
this.temp = this.b / this.a;
|
||
this.es = 1 - Math.pow(this.temp, 2);
|
||
this.e3 = Math.sqrt(this.es);
|
||
|
||
this.sin_po = Math.sin(this.lat1);
|
||
this.cos_po = Math.cos(this.lat1);
|
||
this.t1 = this.sin_po;
|
||
this.con = this.sin_po;
|
||
this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
|
||
this.qs1 = qsfnz(this.e3, this.sin_po);
|
||
|
||
this.sin_po = Math.sin(this.lat2);
|
||
this.cos_po = Math.cos(this.lat2);
|
||
this.t2 = this.sin_po;
|
||
this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
|
||
this.qs2 = qsfnz(this.e3, this.sin_po);
|
||
|
||
this.sin_po = Math.sin(this.lat0);
|
||
this.cos_po = Math.cos(this.lat0);
|
||
this.t3 = this.sin_po;
|
||
this.qs0 = qsfnz(this.e3, this.sin_po);
|
||
|
||
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
|
||
this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
|
||
}
|
||
else {
|
||
this.ns0 = this.con;
|
||
}
|
||
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
|
||
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
|
||
}
|
||
|
||
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
|
||
-------------------------------------------------------------------*/
|
||
function forward$13(p) {
|
||
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
this.sin_phi = Math.sin(lat);
|
||
this.cos_phi = Math.cos(lat);
|
||
|
||
var qs = qsfnz(this.e3, this.sin_phi);
|
||
var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
|
||
var theta = this.ns0 * adjust_lon(lon - this.long0);
|
||
var x = rh1 * Math.sin(theta) + this.x0;
|
||
var y = this.rh - rh1 * Math.cos(theta) + this.y0;
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
function inverse$13(p) {
|
||
var rh1, qs, con, theta, lon, lat;
|
||
|
||
p.x -= this.x0;
|
||
p.y = this.rh - p.y + this.y0;
|
||
if (this.ns0 >= 0) {
|
||
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
con = 1;
|
||
}
|
||
else {
|
||
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
|
||
con = -1;
|
||
}
|
||
theta = 0;
|
||
if (rh1 !== 0) {
|
||
theta = Math.atan2(con * p.x, con * p.y);
|
||
}
|
||
con = rh1 * this.ns0 / this.a;
|
||
if (this.sphere) {
|
||
lat = Math.asin((this.c - con * con) / (2 * this.ns0));
|
||
}
|
||
else {
|
||
qs = (this.c - con * con) / this.ns0;
|
||
lat = this.phi1z(this.e3, qs);
|
||
}
|
||
|
||
lon = adjust_lon(theta / this.ns0 + this.long0);
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
/* Function to compute phi1, the latitude for the inverse of the
|
||
Albers Conical Equal-Area projection.
|
||
-------------------------------------------*/
|
||
function phi1z(eccent, qs) {
|
||
var sinphi, cosphi, con, com, dphi;
|
||
var phi = asinz(0.5 * qs);
|
||
if (eccent < EPSLN) {
|
||
return phi;
|
||
}
|
||
|
||
var eccnts = eccent * eccent;
|
||
for (var i = 1; i <= 25; i++) {
|
||
sinphi = Math.sin(phi);
|
||
cosphi = Math.cos(phi);
|
||
con = eccent * sinphi;
|
||
com = 1 - con * con;
|
||
dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
|
||
phi = phi + dphi;
|
||
if (Math.abs(dphi) <= 1e-7) {
|
||
return phi;
|
||
}
|
||
}
|
||
return null;
|
||
}
|
||
|
||
var names$15 = ["Albers_Conic_Equal_Area", "Albers", "aea"];
|
||
var aea = {
|
||
init: init$14,
|
||
forward: forward$13,
|
||
inverse: inverse$13,
|
||
names: names$15,
|
||
phi1z: phi1z
|
||
};
|
||
|
||
/*
|
||
reference:
|
||
Wolfram Mathworld "Gnomonic Projection"
|
||
http://mathworld.wolfram.com/GnomonicProjection.html
|
||
Accessed: 12th November 2009
|
||
*/
|
||
function init$15() {
|
||
|
||
/* Place parameters in static storage for common use
|
||
-------------------------------------------------*/
|
||
this.sin_p14 = Math.sin(this.lat0);
|
||
this.cos_p14 = Math.cos(this.lat0);
|
||
// Approximation for projecting points to the horizon (infinity)
|
||
this.infinity_dist = 1000 * this.a;
|
||
this.rc = 1;
|
||
}
|
||
|
||
/* Gnomonic forward equations--mapping lat,long to x,y
|
||
---------------------------------------------------*/
|
||
function forward$14(p) {
|
||
var sinphi, cosphi; /* sin and cos value */
|
||
var dlon; /* delta longitude value */
|
||
var coslon; /* cos of longitude */
|
||
var ksp; /* scale factor */
|
||
var g;
|
||
var x, y;
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
/* Forward equations
|
||
-----------------*/
|
||
dlon = adjust_lon(lon - this.long0);
|
||
|
||
sinphi = Math.sin(lat);
|
||
cosphi = Math.cos(lat);
|
||
|
||
coslon = Math.cos(dlon);
|
||
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
|
||
ksp = 1;
|
||
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
|
||
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
|
||
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
|
||
}
|
||
else {
|
||
|
||
// Point is in the opposing hemisphere and is unprojectable
|
||
// We still need to return a reasonable point, so we project
|
||
// to infinity, on a bearing
|
||
// equivalent to the northern hemisphere equivalent
|
||
// This is a reasonable approximation for short shapes and lines that
|
||
// straddle the horizon.
|
||
|
||
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
|
||
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
|
||
|
||
}
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
function inverse$14(p) {
|
||
var rh; /* Rho */
|
||
var sinc, cosc;
|
||
var c;
|
||
var lon, lat;
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
p.x = (p.x - this.x0) / this.a;
|
||
p.y = (p.y - this.y0) / this.a;
|
||
|
||
p.x /= this.k0;
|
||
p.y /= this.k0;
|
||
|
||
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
|
||
c = Math.atan2(rh, this.rc);
|
||
sinc = Math.sin(c);
|
||
cosc = Math.cos(c);
|
||
|
||
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
|
||
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
|
||
lon = adjust_lon(this.long0 + lon);
|
||
}
|
||
else {
|
||
lat = this.phic0;
|
||
lon = 0;
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$16 = ["gnom"];
|
||
var gnom = {
|
||
init: init$15,
|
||
forward: forward$14,
|
||
inverse: inverse$14,
|
||
names: names$16
|
||
};
|
||
|
||
var iqsfnz = function(eccent, q) {
|
||
var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
|
||
if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
|
||
if (q < 0) {
|
||
return (-1 * HALF_PI);
|
||
}
|
||
else {
|
||
return HALF_PI;
|
||
}
|
||
}
|
||
//var phi = 0.5* q/(1-eccent*eccent);
|
||
var phi = Math.asin(0.5 * q);
|
||
var dphi;
|
||
var sin_phi;
|
||
var cos_phi;
|
||
var con;
|
||
for (var i = 0; i < 30; i++) {
|
||
sin_phi = Math.sin(phi);
|
||
cos_phi = Math.cos(phi);
|
||
con = eccent * sin_phi;
|
||
dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
|
||
phi += dphi;
|
||
if (Math.abs(dphi) <= 0.0000000001) {
|
||
return phi;
|
||
}
|
||
}
|
||
|
||
//console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
|
||
return NaN;
|
||
};
|
||
|
||
/*
|
||
reference:
|
||
"Cartographic Projection Procedures for the UNIX Environment-
|
||
A User's Manual" by Gerald I. Evenden,
|
||
USGS Open File Report 90-284and Release 4 Interim Reports (2003)
|
||
*/
|
||
function init$16() {
|
||
//no-op
|
||
if (!this.sphere) {
|
||
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
|
||
}
|
||
}
|
||
|
||
/* Cylindrical Equal Area forward equations--mapping lat,long to x,y
|
||
------------------------------------------------------------*/
|
||
function forward$15(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var x, y;
|
||
/* Forward equations
|
||
-----------------*/
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
if (this.sphere) {
|
||
x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
|
||
y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
|
||
}
|
||
else {
|
||
var qs = qsfnz(this.e, Math.sin(lat));
|
||
x = this.x0 + this.a * this.k0 * dlon;
|
||
y = this.y0 + this.a * qs * 0.5 / this.k0;
|
||
}
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
|
||
------------------------------------------------------------*/
|
||
function inverse$15(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
var lon, lat;
|
||
|
||
if (this.sphere) {
|
||
lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
|
||
lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
|
||
}
|
||
else {
|
||
lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
|
||
lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$17 = ["cea"];
|
||
var cea = {
|
||
init: init$16,
|
||
forward: forward$15,
|
||
inverse: inverse$15,
|
||
names: names$17
|
||
};
|
||
|
||
function init$17() {
|
||
|
||
this.x0 = this.x0 || 0;
|
||
this.y0 = this.y0 || 0;
|
||
this.lat0 = this.lat0 || 0;
|
||
this.long0 = this.long0 || 0;
|
||
this.lat_ts = this.lat_ts || 0;
|
||
this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
|
||
|
||
this.rc = Math.cos(this.lat_ts);
|
||
}
|
||
|
||
// forward equations--mapping lat,long to x,y
|
||
// -----------------------------------------------------------------
|
||
function forward$16(p) {
|
||
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
var dlat = adjust_lat(lat - this.lat0);
|
||
p.x = this.x0 + (this.a * dlon * this.rc);
|
||
p.y = this.y0 + (this.a * dlat);
|
||
return p;
|
||
}
|
||
|
||
// inverse equations--mapping x,y to lat/long
|
||
// -----------------------------------------------------------------
|
||
function inverse$16(p) {
|
||
|
||
var x = p.x;
|
||
var y = p.y;
|
||
|
||
p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
|
||
p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
|
||
return p;
|
||
}
|
||
|
||
var names$18 = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
|
||
var eqc = {
|
||
init: init$17,
|
||
forward: forward$16,
|
||
inverse: inverse$16,
|
||
names: names$18
|
||
};
|
||
|
||
var MAX_ITER$2 = 20;
|
||
|
||
function init$18() {
|
||
/* Place parameters in static storage for common use
|
||
-------------------------------------------------*/
|
||
this.temp = this.b / this.a;
|
||
this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
|
||
this.e = Math.sqrt(this.es);
|
||
this.e0 = e0fn(this.es);
|
||
this.e1 = e1fn(this.es);
|
||
this.e2 = e2fn(this.es);
|
||
this.e3 = e3fn(this.es);
|
||
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
|
||
}
|
||
|
||
/* Polyconic forward equations--mapping lat,long to x,y
|
||
---------------------------------------------------*/
|
||
function forward$17(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var x, y, el;
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
el = dlon * Math.sin(lat);
|
||
if (this.sphere) {
|
||
if (Math.abs(lat) <= EPSLN) {
|
||
x = this.a * dlon;
|
||
y = -1 * this.a * this.lat0;
|
||
}
|
||
else {
|
||
x = this.a * Math.sin(el) / Math.tan(lat);
|
||
y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
|
||
}
|
||
}
|
||
else {
|
||
if (Math.abs(lat) <= EPSLN) {
|
||
x = this.a * dlon;
|
||
y = -1 * this.ml0;
|
||
}
|
||
else {
|
||
var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
|
||
x = nl * Math.sin(el);
|
||
y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
|
||
}
|
||
|
||
}
|
||
p.x = x + this.x0;
|
||
p.y = y + this.y0;
|
||
return p;
|
||
}
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
function inverse$17(p) {
|
||
var lon, lat, x, y, i;
|
||
var al, bl;
|
||
var phi, dphi;
|
||
x = p.x - this.x0;
|
||
y = p.y - this.y0;
|
||
|
||
if (this.sphere) {
|
||
if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
|
||
lon = adjust_lon(x / this.a + this.long0);
|
||
lat = 0;
|
||
}
|
||
else {
|
||
al = this.lat0 + y / this.a;
|
||
bl = x * x / this.a / this.a + al * al;
|
||
phi = al;
|
||
var tanphi;
|
||
for (i = MAX_ITER$2; i; --i) {
|
||
tanphi = Math.tan(phi);
|
||
dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
|
||
phi += dphi;
|
||
if (Math.abs(dphi) <= EPSLN) {
|
||
lat = phi;
|
||
break;
|
||
}
|
||
}
|
||
lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
|
||
}
|
||
}
|
||
else {
|
||
if (Math.abs(y + this.ml0) <= EPSLN) {
|
||
lat = 0;
|
||
lon = adjust_lon(this.long0 + x / this.a);
|
||
}
|
||
else {
|
||
|
||
al = (this.ml0 + y) / this.a;
|
||
bl = x * x / this.a / this.a + al * al;
|
||
phi = al;
|
||
var cl, mln, mlnp, ma;
|
||
var con;
|
||
for (i = MAX_ITER$2; i; --i) {
|
||
con = this.e * Math.sin(phi);
|
||
cl = Math.sqrt(1 - con * con) * Math.tan(phi);
|
||
mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
|
||
mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
|
||
ma = mln / this.a;
|
||
dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
|
||
phi -= dphi;
|
||
if (Math.abs(dphi) <= EPSLN) {
|
||
lat = phi;
|
||
break;
|
||
}
|
||
}
|
||
|
||
//lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
|
||
cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
|
||
lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
|
||
}
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$19 = ["Polyconic", "poly"];
|
||
var poly = {
|
||
init: init$18,
|
||
forward: forward$17,
|
||
inverse: inverse$17,
|
||
names: names$19
|
||
};
|
||
|
||
/*
|
||
reference
|
||
Department of Land and Survey Technical Circular 1973/32
|
||
http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
|
||
OSG Technical Report 4.1
|
||
http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
|
||
*/
|
||
|
||
/**
|
||
* iterations: Number of iterations to refine inverse transform.
|
||
* 0 -> km accuracy
|
||
* 1 -> m accuracy -- suitable for most mapping applications
|
||
* 2 -> mm accuracy
|
||
*/
|
||
|
||
|
||
function init$19() {
|
||
this.A = [];
|
||
this.A[1] = 0.6399175073;
|
||
this.A[2] = -0.1358797613;
|
||
this.A[3] = 0.063294409;
|
||
this.A[4] = -0.02526853;
|
||
this.A[5] = 0.0117879;
|
||
this.A[6] = -0.0055161;
|
||
this.A[7] = 0.0026906;
|
||
this.A[8] = -0.001333;
|
||
this.A[9] = 0.00067;
|
||
this.A[10] = -0.00034;
|
||
|
||
this.B_re = [];
|
||
this.B_im = [];
|
||
this.B_re[1] = 0.7557853228;
|
||
this.B_im[1] = 0;
|
||
this.B_re[2] = 0.249204646;
|
||
this.B_im[2] = 0.003371507;
|
||
this.B_re[3] = -0.001541739;
|
||
this.B_im[3] = 0.041058560;
|
||
this.B_re[4] = -0.10162907;
|
||
this.B_im[4] = 0.01727609;
|
||
this.B_re[5] = -0.26623489;
|
||
this.B_im[5] = -0.36249218;
|
||
this.B_re[6] = -0.6870983;
|
||
this.B_im[6] = -1.1651967;
|
||
|
||
this.C_re = [];
|
||
this.C_im = [];
|
||
this.C_re[1] = 1.3231270439;
|
||
this.C_im[1] = 0;
|
||
this.C_re[2] = -0.577245789;
|
||
this.C_im[2] = -0.007809598;
|
||
this.C_re[3] = 0.508307513;
|
||
this.C_im[3] = -0.112208952;
|
||
this.C_re[4] = -0.15094762;
|
||
this.C_im[4] = 0.18200602;
|
||
this.C_re[5] = 1.01418179;
|
||
this.C_im[5] = 1.64497696;
|
||
this.C_re[6] = 1.9660549;
|
||
this.C_im[6] = 2.5127645;
|
||
|
||
this.D = [];
|
||
this.D[1] = 1.5627014243;
|
||
this.D[2] = 0.5185406398;
|
||
this.D[3] = -0.03333098;
|
||
this.D[4] = -0.1052906;
|
||
this.D[5] = -0.0368594;
|
||
this.D[6] = 0.007317;
|
||
this.D[7] = 0.01220;
|
||
this.D[8] = 0.00394;
|
||
this.D[9] = -0.0013;
|
||
}
|
||
|
||
/**
|
||
New Zealand Map Grid Forward - long/lat to x/y
|
||
long/lat in radians
|
||
*/
|
||
function forward$18(p) {
|
||
var n;
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
var delta_lat = lat - this.lat0;
|
||
var delta_lon = lon - this.long0;
|
||
|
||
// 1. Calculate d_phi and d_psi ... // and d_lambda
|
||
// For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
|
||
var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
|
||
var d_lambda = delta_lon;
|
||
var d_phi_n = 1; // d_phi^0
|
||
|
||
var d_psi = 0;
|
||
for (n = 1; n <= 10; n++) {
|
||
d_phi_n = d_phi_n * d_phi;
|
||
d_psi = d_psi + this.A[n] * d_phi_n;
|
||
}
|
||
|
||
// 2. Calculate theta
|
||
var th_re = d_psi;
|
||
var th_im = d_lambda;
|
||
|
||
// 3. Calculate z
|
||
var th_n_re = 1;
|
||
var th_n_im = 0; // theta^0
|
||
var th_n_re1;
|
||
var th_n_im1;
|
||
|
||
var z_re = 0;
|
||
var z_im = 0;
|
||
for (n = 1; n <= 6; n++) {
|
||
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
|
||
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
|
||
th_n_re = th_n_re1;
|
||
th_n_im = th_n_im1;
|
||
z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
|
||
z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
|
||
}
|
||
|
||
// 4. Calculate easting and northing
|
||
p.x = (z_im * this.a) + this.x0;
|
||
p.y = (z_re * this.a) + this.y0;
|
||
|
||
return p;
|
||
}
|
||
|
||
/**
|
||
New Zealand Map Grid Inverse - x/y to long/lat
|
||
*/
|
||
function inverse$18(p) {
|
||
var n;
|
||
var x = p.x;
|
||
var y = p.y;
|
||
|
||
var delta_x = x - this.x0;
|
||
var delta_y = y - this.y0;
|
||
|
||
// 1. Calculate z
|
||
var z_re = delta_y / this.a;
|
||
var z_im = delta_x / this.a;
|
||
|
||
// 2a. Calculate theta - first approximation gives km accuracy
|
||
var z_n_re = 1;
|
||
var z_n_im = 0; // z^0
|
||
var z_n_re1;
|
||
var z_n_im1;
|
||
|
||
var th_re = 0;
|
||
var th_im = 0;
|
||
for (n = 1; n <= 6; n++) {
|
||
z_n_re1 = z_n_re * z_re - z_n_im * z_im;
|
||
z_n_im1 = z_n_im * z_re + z_n_re * z_im;
|
||
z_n_re = z_n_re1;
|
||
z_n_im = z_n_im1;
|
||
th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
|
||
th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
|
||
}
|
||
|
||
// 2b. Iterate to refine the accuracy of the calculation
|
||
// 0 iterations gives km accuracy
|
||
// 1 iteration gives m accuracy -- good enough for most mapping applications
|
||
// 2 iterations bives mm accuracy
|
||
for (var i = 0; i < this.iterations; i++) {
|
||
var th_n_re = th_re;
|
||
var th_n_im = th_im;
|
||
var th_n_re1;
|
||
var th_n_im1;
|
||
|
||
var num_re = z_re;
|
||
var num_im = z_im;
|
||
for (n = 2; n <= 6; n++) {
|
||
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
|
||
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
|
||
th_n_re = th_n_re1;
|
||
th_n_im = th_n_im1;
|
||
num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
|
||
num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
|
||
}
|
||
|
||
th_n_re = 1;
|
||
th_n_im = 0;
|
||
var den_re = this.B_re[1];
|
||
var den_im = this.B_im[1];
|
||
for (n = 2; n <= 6; n++) {
|
||
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
|
||
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
|
||
th_n_re = th_n_re1;
|
||
th_n_im = th_n_im1;
|
||
den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
|
||
den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
|
||
}
|
||
|
||
// Complex division
|
||
var den2 = den_re * den_re + den_im * den_im;
|
||
th_re = (num_re * den_re + num_im * den_im) / den2;
|
||
th_im = (num_im * den_re - num_re * den_im) / den2;
|
||
}
|
||
|
||
// 3. Calculate d_phi ... // and d_lambda
|
||
var d_psi = th_re;
|
||
var d_lambda = th_im;
|
||
var d_psi_n = 1; // d_psi^0
|
||
|
||
var d_phi = 0;
|
||
for (n = 1; n <= 9; n++) {
|
||
d_psi_n = d_psi_n * d_psi;
|
||
d_phi = d_phi + this.D[n] * d_psi_n;
|
||
}
|
||
|
||
// 4. Calculate latitude and longitude
|
||
// d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
|
||
var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
|
||
var lon = this.long0 + d_lambda;
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
|
||
return p;
|
||
}
|
||
|
||
var names$20 = ["New_Zealand_Map_Grid", "nzmg"];
|
||
var nzmg = {
|
||
init: init$19,
|
||
forward: forward$18,
|
||
inverse: inverse$18,
|
||
names: names$20
|
||
};
|
||
|
||
/*
|
||
reference
|
||
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
|
||
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
|
||
*/
|
||
|
||
|
||
/* Initialize the Miller Cylindrical projection
|
||
-------------------------------------------*/
|
||
function init$20() {
|
||
//no-op
|
||
}
|
||
|
||
/* Miller Cylindrical forward equations--mapping lat,long to x,y
|
||
------------------------------------------------------------*/
|
||
function forward$19(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
/* Forward equations
|
||
-----------------*/
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
var x = this.x0 + this.a * dlon;
|
||
var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
/* Miller Cylindrical inverse equations--mapping x,y to lat/long
|
||
------------------------------------------------------------*/
|
||
function inverse$19(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
|
||
var lon = adjust_lon(this.long0 + p.x / this.a);
|
||
var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$21 = ["Miller_Cylindrical", "mill"];
|
||
var mill = {
|
||
init: init$20,
|
||
forward: forward$19,
|
||
inverse: inverse$19,
|
||
names: names$21
|
||
};
|
||
|
||
var MAX_ITER$3 = 20;
|
||
function init$21() {
|
||
/* Place parameters in static storage for common use
|
||
-------------------------------------------------*/
|
||
|
||
|
||
if (!this.sphere) {
|
||
this.en = pj_enfn(this.es);
|
||
}
|
||
else {
|
||
this.n = 1;
|
||
this.m = 0;
|
||
this.es = 0;
|
||
this.C_y = Math.sqrt((this.m + 1) / this.n);
|
||
this.C_x = this.C_y / (this.m + 1);
|
||
}
|
||
|
||
}
|
||
|
||
/* Sinusoidal forward equations--mapping lat,long to x,y
|
||
-----------------------------------------------------*/
|
||
function forward$20(p) {
|
||
var x, y;
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
/* Forward equations
|
||
-----------------*/
|
||
lon = adjust_lon(lon - this.long0);
|
||
|
||
if (this.sphere) {
|
||
if (!this.m) {
|
||
lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
|
||
}
|
||
else {
|
||
var k = this.n * Math.sin(lat);
|
||
for (var i = MAX_ITER$3; i; --i) {
|
||
var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
|
||
lat -= V;
|
||
if (Math.abs(V) < EPSLN) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
|
||
y = this.a * this.C_y * lat;
|
||
|
||
}
|
||
else {
|
||
|
||
var s = Math.sin(lat);
|
||
var c = Math.cos(lat);
|
||
y = this.a * pj_mlfn(lat, s, c, this.en);
|
||
x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
|
||
}
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
function inverse$20(p) {
|
||
var lat, temp, lon, s;
|
||
|
||
p.x -= this.x0;
|
||
lon = p.x / this.a;
|
||
p.y -= this.y0;
|
||
lat = p.y / this.a;
|
||
|
||
if (this.sphere) {
|
||
lat /= this.C_y;
|
||
lon = lon / (this.C_x * (this.m + Math.cos(lat)));
|
||
if (this.m) {
|
||
lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
|
||
}
|
||
else if (this.n !== 1) {
|
||
lat = asinz(Math.sin(lat) / this.n);
|
||
}
|
||
lon = adjust_lon(lon + this.long0);
|
||
lat = adjust_lat(lat);
|
||
}
|
||
else {
|
||
lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
|
||
s = Math.abs(lat);
|
||
if (s < HALF_PI) {
|
||
s = Math.sin(lat);
|
||
temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
|
||
//temp = this.long0 + p.x / (this.a * Math.cos(lat));
|
||
lon = adjust_lon(temp);
|
||
}
|
||
else if ((s - EPSLN) < HALF_PI) {
|
||
lon = this.long0;
|
||
}
|
||
}
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$22 = ["Sinusoidal", "sinu"];
|
||
var sinu = {
|
||
init: init$21,
|
||
forward: forward$20,
|
||
inverse: inverse$20,
|
||
names: names$22
|
||
};
|
||
|
||
function init$22() {}
|
||
/* Mollweide forward equations--mapping lat,long to x,y
|
||
----------------------------------------------------*/
|
||
function forward$21(p) {
|
||
|
||
/* Forward equations
|
||
-----------------*/
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
var delta_lon = adjust_lon(lon - this.long0);
|
||
var theta = lat;
|
||
var con = Math.PI * Math.sin(lat);
|
||
|
||
/* Iterate using the Newton-Raphson method to find theta
|
||
-----------------------------------------------------*/
|
||
while (true) {
|
||
var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
|
||
theta += delta_theta;
|
||
if (Math.abs(delta_theta) < EPSLN) {
|
||
break;
|
||
}
|
||
}
|
||
theta /= 2;
|
||
|
||
/* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
|
||
this is done here because of precision problems with "cos(theta)"
|
||
--------------------------------------------------------------------------*/
|
||
if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
|
||
delta_lon = 0;
|
||
}
|
||
var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
|
||
var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
|
||
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
function inverse$21(p) {
|
||
var theta;
|
||
var arg;
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
arg = p.y / (1.4142135623731 * this.a);
|
||
|
||
/* Because of division by zero problems, 'arg' can not be 1. Therefore
|
||
a number very close to one is used instead.
|
||
-------------------------------------------------------------------*/
|
||
if (Math.abs(arg) > 0.999999999999) {
|
||
arg = 0.999999999999;
|
||
}
|
||
theta = Math.asin(arg);
|
||
var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
|
||
if (lon < (-Math.PI)) {
|
||
lon = -Math.PI;
|
||
}
|
||
if (lon > Math.PI) {
|
||
lon = Math.PI;
|
||
}
|
||
arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
|
||
if (Math.abs(arg) > 1) {
|
||
arg = 1;
|
||
}
|
||
var lat = Math.asin(arg);
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$23 = ["Mollweide", "moll"];
|
||
var moll = {
|
||
init: init$22,
|
||
forward: forward$21,
|
||
inverse: inverse$21,
|
||
names: names$23
|
||
};
|
||
|
||
function init$23() {
|
||
|
||
/* Place parameters in static storage for common use
|
||
-------------------------------------------------*/
|
||
// Standard Parallels cannot be equal and on opposite sides of the equator
|
||
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
|
||
return;
|
||
}
|
||
this.lat2 = this.lat2 || this.lat1;
|
||
this.temp = this.b / this.a;
|
||
this.es = 1 - Math.pow(this.temp, 2);
|
||
this.e = Math.sqrt(this.es);
|
||
this.e0 = e0fn(this.es);
|
||
this.e1 = e1fn(this.es);
|
||
this.e2 = e2fn(this.es);
|
||
this.e3 = e3fn(this.es);
|
||
|
||
this.sinphi = Math.sin(this.lat1);
|
||
this.cosphi = Math.cos(this.lat1);
|
||
|
||
this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
|
||
this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
|
||
|
||
if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
|
||
this.ns = this.sinphi;
|
||
}
|
||
else {
|
||
this.sinphi = Math.sin(this.lat2);
|
||
this.cosphi = Math.cos(this.lat2);
|
||
this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
|
||
this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
|
||
this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
|
||
}
|
||
this.g = this.ml1 + this.ms1 / this.ns;
|
||
this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
|
||
this.rh = this.a * (this.g - this.ml0);
|
||
}
|
||
|
||
/* Equidistant Conic forward equations--mapping lat,long to x,y
|
||
-----------------------------------------------------------*/
|
||
function forward$22(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var rh1;
|
||
|
||
/* Forward equations
|
||
-----------------*/
|
||
if (this.sphere) {
|
||
rh1 = this.a * (this.g - lat);
|
||
}
|
||
else {
|
||
var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
|
||
rh1 = this.a * (this.g - ml);
|
||
}
|
||
var theta = this.ns * adjust_lon(lon - this.long0);
|
||
var x = this.x0 + rh1 * Math.sin(theta);
|
||
var y = this.y0 + this.rh - rh1 * Math.cos(theta);
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
/* Inverse equations
|
||
-----------------*/
|
||
function inverse$22(p) {
|
||
p.x -= this.x0;
|
||
p.y = this.rh - p.y + this.y0;
|
||
var con, rh1, lat, lon;
|
||
if (this.ns >= 0) {
|
||
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
con = 1;
|
||
}
|
||
else {
|
||
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
|
||
con = -1;
|
||
}
|
||
var theta = 0;
|
||
if (rh1 !== 0) {
|
||
theta = Math.atan2(con * p.x, con * p.y);
|
||
}
|
||
|
||
if (this.sphere) {
|
||
lon = adjust_lon(this.long0 + theta / this.ns);
|
||
lat = adjust_lat(this.g - rh1 / this.a);
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
else {
|
||
var ml = this.g - rh1 / this.a;
|
||
lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
|
||
lon = adjust_lon(this.long0 + theta / this.ns);
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
}
|
||
|
||
var names$24 = ["Equidistant_Conic", "eqdc"];
|
||
var eqdc = {
|
||
init: init$23,
|
||
forward: forward$22,
|
||
inverse: inverse$22,
|
||
names: names$24
|
||
};
|
||
|
||
/* Initialize the Van Der Grinten projection
|
||
----------------------------------------*/
|
||
function init$24() {
|
||
//this.R = 6370997; //Radius of earth
|
||
this.R = this.a;
|
||
}
|
||
|
||
function forward$23(p) {
|
||
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
|
||
/* Forward equations
|
||
-----------------*/
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
var x, y;
|
||
|
||
if (Math.abs(lat) <= EPSLN) {
|
||
x = this.x0 + this.R * dlon;
|
||
y = this.y0;
|
||
}
|
||
var theta = asinz(2 * Math.abs(lat / Math.PI));
|
||
if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
|
||
x = this.x0;
|
||
if (lat >= 0) {
|
||
y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
|
||
}
|
||
else {
|
||
y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
|
||
}
|
||
// return(OK);
|
||
}
|
||
var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
|
||
var asq = al * al;
|
||
var sinth = Math.sin(theta);
|
||
var costh = Math.cos(theta);
|
||
|
||
var g = costh / (sinth + costh - 1);
|
||
var gsq = g * g;
|
||
var m = g * (2 / sinth - 1);
|
||
var msq = m * m;
|
||
var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
|
||
if (dlon < 0) {
|
||
con = -con;
|
||
}
|
||
x = this.x0 + con;
|
||
//con = Math.abs(con / (Math.PI * this.R));
|
||
var q = asq + g;
|
||
con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
|
||
if (lat >= 0) {
|
||
//y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
|
||
y = this.y0 + con;
|
||
}
|
||
else {
|
||
//y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
|
||
y = this.y0 - con;
|
||
}
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
/* Van Der Grinten inverse equations--mapping x,y to lat/long
|
||
---------------------------------------------------------*/
|
||
function inverse$23(p) {
|
||
var lon, lat;
|
||
var xx, yy, xys, c1, c2, c3;
|
||
var a1;
|
||
var m1;
|
||
var con;
|
||
var th1;
|
||
var d;
|
||
|
||
/* inverse equations
|
||
-----------------*/
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
con = Math.PI * this.R;
|
||
xx = p.x / con;
|
||
yy = p.y / con;
|
||
xys = xx * xx + yy * yy;
|
||
c1 = -Math.abs(yy) * (1 + xys);
|
||
c2 = c1 - 2 * yy * yy + xx * xx;
|
||
c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
|
||
d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
|
||
a1 = (c1 - c2 * c2 / 3 / c3) / c3;
|
||
m1 = 2 * Math.sqrt(-a1 / 3);
|
||
con = ((3 * d) / a1) / m1;
|
||
if (Math.abs(con) > 1) {
|
||
if (con >= 0) {
|
||
con = 1;
|
||
}
|
||
else {
|
||
con = -1;
|
||
}
|
||
}
|
||
th1 = Math.acos(con) / 3;
|
||
if (p.y >= 0) {
|
||
lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
|
||
}
|
||
else {
|
||
lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
|
||
}
|
||
|
||
if (Math.abs(xx) < EPSLN) {
|
||
lon = this.long0;
|
||
}
|
||
else {
|
||
lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$25 = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
|
||
var vandg = {
|
||
init: init$24,
|
||
forward: forward$23,
|
||
inverse: inverse$23,
|
||
names: names$25
|
||
};
|
||
|
||
function init$25() {
|
||
this.sin_p12 = Math.sin(this.lat0);
|
||
this.cos_p12 = Math.cos(this.lat0);
|
||
}
|
||
|
||
function forward$24(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var sinphi = Math.sin(p.y);
|
||
var cosphi = Math.cos(p.y);
|
||
var dlon = adjust_lon(lon - this.long0);
|
||
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
|
||
if (this.sphere) {
|
||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
//North Pole case
|
||
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
|
||
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
|
||
return p;
|
||
}
|
||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
//South Pole case
|
||
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
|
||
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
|
||
return p;
|
||
}
|
||
else {
|
||
//default case
|
||
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
|
||
c = Math.acos(cos_c);
|
||
kp = c ? c / Math.sin(c) : 1;
|
||
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
|
||
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
|
||
return p;
|
||
}
|
||
}
|
||
else {
|
||
e0 = e0fn(this.es);
|
||
e1 = e1fn(this.es);
|
||
e2 = e2fn(this.es);
|
||
e3 = e3fn(this.es);
|
||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
//North Pole case
|
||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
|
||
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
|
||
return p;
|
||
}
|
||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
//South Pole case
|
||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
|
||
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
|
||
return p;
|
||
}
|
||
else {
|
||
//Default case
|
||
tanphi = sinphi / cosphi;
|
||
Nl1 = gN(this.a, this.e, this.sin_p12);
|
||
Nl = gN(this.a, this.e, sinphi);
|
||
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
|
||
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
|
||
if (Az === 0) {
|
||
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||
}
|
||
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
|
||
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||
}
|
||
else {
|
||
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
|
||
}
|
||
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
|
||
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
|
||
GH = G * H;
|
||
Hs = H * H;
|
||
s2 = s * s;
|
||
s3 = s2 * s;
|
||
s4 = s3 * s;
|
||
s5 = s4 * s;
|
||
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
|
||
p.x = this.x0 + c * Math.sin(Az);
|
||
p.y = this.y0 + c * Math.cos(Az);
|
||
return p;
|
||
}
|
||
}
|
||
|
||
|
||
}
|
||
|
||
function inverse$24(p) {
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F, sinpsi;
|
||
if (this.sphere) {
|
||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
if (rh > (2 * HALF_PI * this.a)) {
|
||
return;
|
||
}
|
||
z = rh / this.a;
|
||
|
||
sinz = Math.sin(z);
|
||
cosz = Math.cos(z);
|
||
|
||
lon = this.long0;
|
||
if (Math.abs(rh) <= EPSLN) {
|
||
lat = this.lat0;
|
||
}
|
||
else {
|
||
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
|
||
con = Math.abs(this.lat0) - HALF_PI;
|
||
if (Math.abs(con) <= EPSLN) {
|
||
if (this.lat0 >= 0) {
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
|
||
}
|
||
else {
|
||
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
|
||
}
|
||
}
|
||
else {
|
||
/*con = cosz - this.sin_p12 * Math.sin(lat);
|
||
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
|
||
//no-op, just keep the lon value as is
|
||
} else {
|
||
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
|
||
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
|
||
}*/
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
|
||
}
|
||
}
|
||
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
else {
|
||
e0 = e0fn(this.es);
|
||
e1 = e1fn(this.es);
|
||
e2 = e2fn(this.es);
|
||
e3 = e3fn(this.es);
|
||
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
//North pole case
|
||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
M = Mlp - rh;
|
||
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
//South pole case
|
||
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
M = rh - Mlp;
|
||
|
||
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
else {
|
||
//default case
|
||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
Az = Math.atan2(p.x, p.y);
|
||
N1 = gN(this.a, this.e, this.sin_p12);
|
||
cosAz = Math.cos(Az);
|
||
tmp = this.e * this.cos_p12 * cosAz;
|
||
A = -tmp * tmp / (1 - this.es);
|
||
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
|
||
D = rh / N1;
|
||
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
|
||
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
|
||
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
|
||
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
|
||
sinpsi = Math.sin(psi);
|
||
lat = Math.atan2((sinpsi - this.es * F * this.sin_p12) * Math.tan(psi), sinpsi * (1 - this.es));
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
var names$26 = ["Azimuthal_Equidistant", "aeqd"];
|
||
var aeqd = {
|
||
init: init$25,
|
||
forward: forward$24,
|
||
inverse: inverse$24,
|
||
names: names$26
|
||
};
|
||
|
||
function init$26() {
|
||
//double temp; /* temporary variable */
|
||
|
||
/* Place parameters in static storage for common use
|
||
-------------------------------------------------*/
|
||
this.sin_p14 = Math.sin(this.lat0);
|
||
this.cos_p14 = Math.cos(this.lat0);
|
||
}
|
||
|
||
/* Orthographic forward equations--mapping lat,long to x,y
|
||
---------------------------------------------------*/
|
||
function forward$25(p) {
|
||
var sinphi, cosphi; /* sin and cos value */
|
||
var dlon; /* delta longitude value */
|
||
var coslon; /* cos of longitude */
|
||
var ksp; /* scale factor */
|
||
var g, x, y;
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
/* Forward equations
|
||
-----------------*/
|
||
dlon = adjust_lon(lon - this.long0);
|
||
|
||
sinphi = Math.sin(lat);
|
||
cosphi = Math.cos(lat);
|
||
|
||
coslon = Math.cos(dlon);
|
||
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
|
||
ksp = 1;
|
||
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
|
||
x = this.a * ksp * cosphi * Math.sin(dlon);
|
||
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
|
||
}
|
||
p.x = x;
|
||
p.y = y;
|
||
return p;
|
||
}
|
||
|
||
function inverse$25(p) {
|
||
var rh; /* height above ellipsoid */
|
||
var z; /* angle */
|
||
var sinz, cosz; /* sin of z and cos of z */
|
||
var con;
|
||
var lon, lat;
|
||
/* Inverse equations
|
||
-----------------*/
|
||
p.x -= this.x0;
|
||
p.y -= this.y0;
|
||
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
z = asinz(rh / this.a);
|
||
|
||
sinz = Math.sin(z);
|
||
cosz = Math.cos(z);
|
||
|
||
lon = this.long0;
|
||
if (Math.abs(rh) <= EPSLN) {
|
||
lat = this.lat0;
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
lat = asinz(cosz * this.sin_p14 + (p.y * sinz * this.cos_p14) / rh);
|
||
con = Math.abs(this.lat0) - HALF_PI;
|
||
if (Math.abs(con) <= EPSLN) {
|
||
if (this.lat0 >= 0) {
|
||
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
|
||
}
|
||
else {
|
||
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
|
||
}
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz), rh * this.cos_p14 * cosz - p.y * this.sin_p14 * sinz));
|
||
p.x = lon;
|
||
p.y = lat;
|
||
return p;
|
||
}
|
||
|
||
var names$27 = ["ortho"];
|
||
var ortho = {
|
||
init: init$26,
|
||
forward: forward$25,
|
||
inverse: inverse$25,
|
||
names: names$27
|
||
};
|
||
|
||
// QSC projection rewritten from the original PROJ4
|
||
// https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c
|
||
|
||
/* constants */
|
||
var FACE_ENUM = {
|
||
FRONT: 1,
|
||
RIGHT: 2,
|
||
BACK: 3,
|
||
LEFT: 4,
|
||
TOP: 5,
|
||
BOTTOM: 6
|
||
};
|
||
|
||
var AREA_ENUM = {
|
||
AREA_0: 1,
|
||
AREA_1: 2,
|
||
AREA_2: 3,
|
||
AREA_3: 4
|
||
};
|
||
|
||
function init$27() {
|
||
|
||
this.x0 = this.x0 || 0;
|
||
this.y0 = this.y0 || 0;
|
||
this.lat0 = this.lat0 || 0;
|
||
this.long0 = this.long0 || 0;
|
||
this.lat_ts = this.lat_ts || 0;
|
||
this.title = this.title || "Quadrilateralized Spherical Cube";
|
||
|
||
/* Determine the cube face from the center of projection. */
|
||
if (this.lat0 >= HALF_PI - FORTPI / 2.0) {
|
||
this.face = FACE_ENUM.TOP;
|
||
} else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) {
|
||
this.face = FACE_ENUM.BOTTOM;
|
||
} else if (Math.abs(this.long0) <= FORTPI) {
|
||
this.face = FACE_ENUM.FRONT;
|
||
} else if (Math.abs(this.long0) <= HALF_PI + FORTPI) {
|
||
this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT;
|
||
} else {
|
||
this.face = FACE_ENUM.BACK;
|
||
}
|
||
|
||
/* Fill in useful values for the ellipsoid <-> sphere shift
|
||
* described in [LK12]. */
|
||
if (this.es !== 0) {
|
||
this.one_minus_f = 1 - (this.a - this.b) / this.a;
|
||
this.one_minus_f_squared = this.one_minus_f * this.one_minus_f;
|
||
}
|
||
}
|
||
|
||
// QSC forward equations--mapping lat,long to x,y
|
||
// -----------------------------------------------------------------
|
||
function forward$26(p) {
|
||
var xy = {x: 0, y: 0};
|
||
var lat, lon;
|
||
var theta, phi;
|
||
var t, mu;
|
||
/* nu; */
|
||
var area = {value: 0};
|
||
|
||
// move lon according to projection's lon
|
||
p.x -= this.long0;
|
||
|
||
/* Convert the geodetic latitude to a geocentric latitude.
|
||
* This corresponds to the shift from the ellipsoid to the sphere
|
||
* described in [LK12]. */
|
||
if (this.es !== 0) {//if (P->es != 0) {
|
||
lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y));
|
||
} else {
|
||
lat = p.y;
|
||
}
|
||
|
||
/* Convert the input lat, lon into theta, phi as used by QSC.
|
||
* This depends on the cube face and the area on it.
|
||
* For the top and bottom face, we can compute theta and phi
|
||
* directly from phi, lam. For the other faces, we must use
|
||
* unit sphere cartesian coordinates as an intermediate step. */
|
||
lon = p.x; //lon = lp.lam;
|
||
if (this.face === FACE_ENUM.TOP) {
|
||
phi = HALF_PI - lat;
|
||
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
|
||
area.value = AREA_ENUM.AREA_0;
|
||
theta = lon - HALF_PI;
|
||
} else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) {
|
||
area.value = AREA_ENUM.AREA_1;
|
||
theta = (lon > 0.0 ? lon - SPI : lon + SPI);
|
||
} else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) {
|
||
area.value = AREA_ENUM.AREA_2;
|
||
theta = lon + HALF_PI;
|
||
} else {
|
||
area.value = AREA_ENUM.AREA_3;
|
||
theta = lon;
|
||
}
|
||
} else if (this.face === FACE_ENUM.BOTTOM) {
|
||
phi = HALF_PI + lat;
|
||
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
|
||
area.value = AREA_ENUM.AREA_0;
|
||
theta = -lon + HALF_PI;
|
||
} else if (lon < FORTPI && lon >= -FORTPI) {
|
||
area.value = AREA_ENUM.AREA_1;
|
||
theta = -lon;
|
||
} else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) {
|
||
area.value = AREA_ENUM.AREA_2;
|
||
theta = -lon - HALF_PI;
|
||
} else {
|
||
area.value = AREA_ENUM.AREA_3;
|
||
theta = (lon > 0.0 ? -lon + SPI : -lon - SPI);
|
||
}
|
||
} else {
|
||
var q, r, s;
|
||
var sinlat, coslat;
|
||
var sinlon, coslon;
|
||
|
||
if (this.face === FACE_ENUM.RIGHT) {
|
||
lon = qsc_shift_lon_origin(lon, +HALF_PI);
|
||
} else if (this.face === FACE_ENUM.BACK) {
|
||
lon = qsc_shift_lon_origin(lon, +SPI);
|
||
} else if (this.face === FACE_ENUM.LEFT) {
|
||
lon = qsc_shift_lon_origin(lon, -HALF_PI);
|
||
}
|
||
sinlat = Math.sin(lat);
|
||
coslat = Math.cos(lat);
|
||
sinlon = Math.sin(lon);
|
||
coslon = Math.cos(lon);
|
||
q = coslat * coslon;
|
||
r = coslat * sinlon;
|
||
s = sinlat;
|
||
|
||
if (this.face === FACE_ENUM.FRONT) {
|
||
phi = Math.acos(q);
|
||
theta = qsc_fwd_equat_face_theta(phi, s, r, area);
|
||
} else if (this.face === FACE_ENUM.RIGHT) {
|
||
phi = Math.acos(r);
|
||
theta = qsc_fwd_equat_face_theta(phi, s, -q, area);
|
||
} else if (this.face === FACE_ENUM.BACK) {
|
||
phi = Math.acos(-q);
|
||
theta = qsc_fwd_equat_face_theta(phi, s, -r, area);
|
||
} else if (this.face === FACE_ENUM.LEFT) {
|
||
phi = Math.acos(-r);
|
||
theta = qsc_fwd_equat_face_theta(phi, s, q, area);
|
||
} else {
|
||
/* Impossible */
|
||
phi = theta = 0;
|
||
area.value = AREA_ENUM.AREA_0;
|
||
}
|
||
}
|
||
|
||
/* Compute mu and nu for the area of definition.
|
||
* For mu, see Eq. (3-21) in [OL76], but note the typos:
|
||
* compare with Eq. (3-14). For nu, see Eq. (3-38). */
|
||
mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI));
|
||
t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta)))));
|
||
|
||
/* Apply the result to the real area. */
|
||
if (area.value === AREA_ENUM.AREA_1) {
|
||
mu += HALF_PI;
|
||
} else if (area.value === AREA_ENUM.AREA_2) {
|
||
mu += SPI;
|
||
} else if (area.value === AREA_ENUM.AREA_3) {
|
||
mu += 1.5 * SPI;
|
||
}
|
||
|
||
/* Now compute x, y from mu and nu */
|
||
xy.x = t * Math.cos(mu);
|
||
xy.y = t * Math.sin(mu);
|
||
xy.x = xy.x * this.a + this.x0;
|
||
xy.y = xy.y * this.a + this.y0;
|
||
|
||
p.x = xy.x;
|
||
p.y = xy.y;
|
||
return p;
|
||
}
|
||
|
||
// QSC inverse equations--mapping x,y to lat/long
|
||
// -----------------------------------------------------------------
|
||
function inverse$26(p) {
|
||
var lp = {lam: 0, phi: 0};
|
||
var mu, nu, cosmu, tannu;
|
||
var tantheta, theta, cosphi, phi;
|
||
var t;
|
||
var area = {value: 0};
|
||
|
||
/* de-offset */
|
||
p.x = (p.x - this.x0) / this.a;
|
||
p.y = (p.y - this.y0) / this.a;
|
||
|
||
/* Convert the input x, y to the mu and nu angles as used by QSC.
|
||
* This depends on the area of the cube face. */
|
||
nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y));
|
||
mu = Math.atan2(p.y, p.x);
|
||
if (p.x >= 0.0 && p.x >= Math.abs(p.y)) {
|
||
area.value = AREA_ENUM.AREA_0;
|
||
} else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) {
|
||
area.value = AREA_ENUM.AREA_1;
|
||
mu -= HALF_PI;
|
||
} else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) {
|
||
area.value = AREA_ENUM.AREA_2;
|
||
mu = (mu < 0.0 ? mu + SPI : mu - SPI);
|
||
} else {
|
||
area.value = AREA_ENUM.AREA_3;
|
||
mu += HALF_PI;
|
||
}
|
||
|
||
/* Compute phi and theta for the area of definition.
|
||
* The inverse projection is not described in the original paper, but some
|
||
* good hints can be found here (as of 2011-12-14):
|
||
* http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
|
||
* (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
|
||
t = (SPI / 12) * Math.tan(mu);
|
||
tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2)));
|
||
theta = Math.atan(tantheta);
|
||
cosmu = Math.cos(mu);
|
||
tannu = Math.tan(nu);
|
||
cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta))));
|
||
if (cosphi < -1) {
|
||
cosphi = -1;
|
||
} else if (cosphi > +1) {
|
||
cosphi = +1;
|
||
}
|
||
|
||
/* Apply the result to the real area on the cube face.
|
||
* For the top and bottom face, we can compute phi and lam directly.
|
||
* For the other faces, we must use unit sphere cartesian coordinates
|
||
* as an intermediate step. */
|
||
if (this.face === FACE_ENUM.TOP) {
|
||
phi = Math.acos(cosphi);
|
||
lp.phi = HALF_PI - phi;
|
||
if (area.value === AREA_ENUM.AREA_0) {
|
||
lp.lam = theta + HALF_PI;
|
||
} else if (area.value === AREA_ENUM.AREA_1) {
|
||
lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI);
|
||
} else if (area.value === AREA_ENUM.AREA_2) {
|
||
lp.lam = theta - HALF_PI;
|
||
} else /* area.value == AREA_ENUM.AREA_3 */ {
|
||
lp.lam = theta;
|
||
}
|
||
} else if (this.face === FACE_ENUM.BOTTOM) {
|
||
phi = Math.acos(cosphi);
|
||
lp.phi = phi - HALF_PI;
|
||
if (area.value === AREA_ENUM.AREA_0) {
|
||
lp.lam = -theta + HALF_PI;
|
||
} else if (area.value === AREA_ENUM.AREA_1) {
|
||
lp.lam = -theta;
|
||
} else if (area.value === AREA_ENUM.AREA_2) {
|
||
lp.lam = -theta - HALF_PI;
|
||
} else /* area.value == AREA_ENUM.AREA_3 */ {
|
||
lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI);
|
||
}
|
||
} else {
|
||
/* Compute phi and lam via cartesian unit sphere coordinates. */
|
||
var q, r, s;
|
||
q = cosphi;
|
||
t = q * q;
|
||
if (t >= 1) {
|
||
s = 0;
|
||
} else {
|
||
s = Math.sqrt(1 - t) * Math.sin(theta);
|
||
}
|
||
t += s * s;
|
||
if (t >= 1) {
|
||
r = 0;
|
||
} else {
|
||
r = Math.sqrt(1 - t);
|
||
}
|
||
/* Rotate q,r,s into the correct area. */
|
||
if (area.value === AREA_ENUM.AREA_1) {
|
||
t = r;
|
||
r = -s;
|
||
s = t;
|
||
} else if (area.value === AREA_ENUM.AREA_2) {
|
||
r = -r;
|
||
s = -s;
|
||
} else if (area.value === AREA_ENUM.AREA_3) {
|
||
t = r;
|
||
r = s;
|
||
s = -t;
|
||
}
|
||
/* Rotate q,r,s into the correct cube face. */
|
||
if (this.face === FACE_ENUM.RIGHT) {
|
||
t = q;
|
||
q = -r;
|
||
r = t;
|
||
} else if (this.face === FACE_ENUM.BACK) {
|
||
q = -q;
|
||
r = -r;
|
||
} else if (this.face === FACE_ENUM.LEFT) {
|
||
t = q;
|
||
q = r;
|
||
r = -t;
|
||
}
|
||
/* Now compute phi and lam from the unit sphere coordinates. */
|
||
lp.phi = Math.acos(-s) - HALF_PI;
|
||
lp.lam = Math.atan2(r, q);
|
||
if (this.face === FACE_ENUM.RIGHT) {
|
||
lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI);
|
||
} else if (this.face === FACE_ENUM.BACK) {
|
||
lp.lam = qsc_shift_lon_origin(lp.lam, -SPI);
|
||
} else if (this.face === FACE_ENUM.LEFT) {
|
||
lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI);
|
||
}
|
||
}
|
||
|
||
/* Apply the shift from the sphere to the ellipsoid as described
|
||
* in [LK12]. */
|
||
if (this.es !== 0) {
|
||
var invert_sign;
|
||
var tanphi, xa;
|
||
invert_sign = (lp.phi < 0 ? 1 : 0);
|
||
tanphi = Math.tan(lp.phi);
|
||
xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared);
|
||
lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa));
|
||
if (invert_sign) {
|
||
lp.phi = -lp.phi;
|
||
}
|
||
}
|
||
|
||
lp.lam += this.long0;
|
||
p.x = lp.lam;
|
||
p.y = lp.phi;
|
||
return p;
|
||
}
|
||
|
||
/* Helper function for forward projection: compute the theta angle
|
||
* and determine the area number. */
|
||
function qsc_fwd_equat_face_theta(phi, y, x, area) {
|
||
var theta;
|
||
if (phi < EPSLN) {
|
||
area.value = AREA_ENUM.AREA_0;
|
||
theta = 0.0;
|
||
} else {
|
||
theta = Math.atan2(y, x);
|
||
if (Math.abs(theta) <= FORTPI) {
|
||
area.value = AREA_ENUM.AREA_0;
|
||
} else if (theta > FORTPI && theta <= HALF_PI + FORTPI) {
|
||
area.value = AREA_ENUM.AREA_1;
|
||
theta -= HALF_PI;
|
||
} else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) {
|
||
area.value = AREA_ENUM.AREA_2;
|
||
theta = (theta >= 0.0 ? theta - SPI : theta + SPI);
|
||
} else {
|
||
area.value = AREA_ENUM.AREA_3;
|
||
theta += HALF_PI;
|
||
}
|
||
}
|
||
return theta;
|
||
}
|
||
|
||
/* Helper function: shift the longitude. */
|
||
function qsc_shift_lon_origin(lon, offset) {
|
||
var slon = lon + offset;
|
||
if (slon < -SPI) {
|
||
slon += TWO_PI;
|
||
} else if (slon > +SPI) {
|
||
slon -= TWO_PI;
|
||
}
|
||
return slon;
|
||
}
|
||
|
||
var names$28 = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"];
|
||
var qsc = {
|
||
init: init$27,
|
||
forward: forward$26,
|
||
inverse: inverse$26,
|
||
names: names$28
|
||
};
|
||
|
||
// Robinson projection
|
||
// Based on https://github.com/OSGeo/proj.4/blob/master/src/PJ_robin.c
|
||
// Polynomial coeficients from http://article.gmane.org/gmane.comp.gis.proj-4.devel/6039
|
||
|
||
var COEFS_X = [
|
||
[1.0000, 2.2199e-17, -7.15515e-05, 3.1103e-06],
|
||
[0.9986, -0.000482243, -2.4897e-05, -1.3309e-06],
|
||
[0.9954, -0.00083103, -4.48605e-05, -9.86701e-07],
|
||
[0.9900, -0.00135364, -5.9661e-05, 3.6777e-06],
|
||
[0.9822, -0.00167442, -4.49547e-06, -5.72411e-06],
|
||
[0.9730, -0.00214868, -9.03571e-05, 1.8736e-08],
|
||
[0.9600, -0.00305085, -9.00761e-05, 1.64917e-06],
|
||
[0.9427, -0.00382792, -6.53386e-05, -2.6154e-06],
|
||
[0.9216, -0.00467746, -0.00010457, 4.81243e-06],
|
||
[0.8962, -0.00536223, -3.23831e-05, -5.43432e-06],
|
||
[0.8679, -0.00609363, -0.000113898, 3.32484e-06],
|
||
[0.8350, -0.00698325, -6.40253e-05, 9.34959e-07],
|
||
[0.7986, -0.00755338, -5.00009e-05, 9.35324e-07],
|
||
[0.7597, -0.00798324, -3.5971e-05, -2.27626e-06],
|
||
[0.7186, -0.00851367, -7.01149e-05, -8.6303e-06],
|
||
[0.6732, -0.00986209, -0.000199569, 1.91974e-05],
|
||
[0.6213, -0.010418, 8.83923e-05, 6.24051e-06],
|
||
[0.5722, -0.00906601, 0.000182, 6.24051e-06],
|
||
[0.5322, -0.00677797, 0.000275608, 6.24051e-06]
|
||
];
|
||
|
||
var COEFS_Y = [
|
||
[-5.20417e-18, 0.0124, 1.21431e-18, -8.45284e-11],
|
||
[0.0620, 0.0124, -1.26793e-09, 4.22642e-10],
|
||
[0.1240, 0.0124, 5.07171e-09, -1.60604e-09],
|
||
[0.1860, 0.0123999, -1.90189e-08, 6.00152e-09],
|
||
[0.2480, 0.0124002, 7.10039e-08, -2.24e-08],
|
||
[0.3100, 0.0123992, -2.64997e-07, 8.35986e-08],
|
||
[0.3720, 0.0124029, 9.88983e-07, -3.11994e-07],
|
||
[0.4340, 0.0123893, -3.69093e-06, -4.35621e-07],
|
||
[0.4958, 0.0123198, -1.02252e-05, -3.45523e-07],
|
||
[0.5571, 0.0121916, -1.54081e-05, -5.82288e-07],
|
||
[0.6176, 0.0119938, -2.41424e-05, -5.25327e-07],
|
||
[0.6769, 0.011713, -3.20223e-05, -5.16405e-07],
|
||
[0.7346, 0.0113541, -3.97684e-05, -6.09052e-07],
|
||
[0.7903, 0.0109107, -4.89042e-05, -1.04739e-06],
|
||
[0.8435, 0.0103431, -6.4615e-05, -1.40374e-09],
|
||
[0.8936, 0.00969686, -6.4636e-05, -8.547e-06],
|
||
[0.9394, 0.00840947, -0.000192841, -4.2106e-06],
|
||
[0.9761, 0.00616527, -0.000256, -4.2106e-06],
|
||
[1.0000, 0.00328947, -0.000319159, -4.2106e-06]
|
||
];
|
||
|
||
var FXC = 0.8487;
|
||
var FYC = 1.3523;
|
||
var C1 = R2D/5; // rad to 5-degree interval
|
||
var RC1 = 1/C1;
|
||
var NODES = 18;
|
||
|
||
var poly3_val = function(coefs, x) {
|
||
return coefs[0] + x * (coefs[1] + x * (coefs[2] + x * coefs[3]));
|
||
};
|
||
|
||
var poly3_der = function(coefs, x) {
|
||
return coefs[1] + x * (2 * coefs[2] + x * 3 * coefs[3]);
|
||
};
|
||
|
||
function newton_rapshon(f_df, start, max_err, iters) {
|
||
var x = start;
|
||
for (; iters; --iters) {
|
||
var upd = f_df(x);
|
||
x -= upd;
|
||
if (Math.abs(upd) < max_err) {
|
||
break;
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
function init$28() {
|
||
this.x0 = this.x0 || 0;
|
||
this.y0 = this.y0 || 0;
|
||
this.long0 = this.long0 || 0;
|
||
this.es = 0;
|
||
this.title = this.title || "Robinson";
|
||
}
|
||
|
||
function forward$27(ll) {
|
||
var lon = adjust_lon(ll.x - this.long0);
|
||
|
||
var dphi = Math.abs(ll.y);
|
||
var i = Math.floor(dphi * C1);
|
||
if (i < 0) {
|
||
i = 0;
|
||
} else if (i >= NODES) {
|
||
i = NODES - 1;
|
||
}
|
||
dphi = R2D * (dphi - RC1 * i);
|
||
var xy = {
|
||
x: poly3_val(COEFS_X[i], dphi) * lon,
|
||
y: poly3_val(COEFS_Y[i], dphi)
|
||
};
|
||
if (ll.y < 0) {
|
||
xy.y = -xy.y;
|
||
}
|
||
|
||
xy.x = xy.x * this.a * FXC + this.x0;
|
||
xy.y = xy.y * this.a * FYC + this.y0;
|
||
return xy;
|
||
}
|
||
|
||
function inverse$27(xy) {
|
||
var ll = {
|
||
x: (xy.x - this.x0) / (this.a * FXC),
|
||
y: Math.abs(xy.y - this.y0) / (this.a * FYC)
|
||
};
|
||
|
||
if (ll.y >= 1) { // pathologic case
|
||
ll.x /= COEFS_X[NODES][0];
|
||
ll.y = xy.y < 0 ? -HALF_PI : HALF_PI;
|
||
} else {
|
||
// find table interval
|
||
var i = Math.floor(ll.y * NODES);
|
||
if (i < 0) {
|
||
i = 0;
|
||
} else if (i >= NODES) {
|
||
i = NODES - 1;
|
||
}
|
||
for (;;) {
|
||
if (COEFS_Y[i][0] > ll.y) {
|
||
--i;
|
||
} else if (COEFS_Y[i+1][0] <= ll.y) {
|
||
++i;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
// linear interpolation in 5 degree interval
|
||
var coefs = COEFS_Y[i];
|
||
var t = 5 * (ll.y - coefs[0]) / (COEFS_Y[i+1][0] - coefs[0]);
|
||
// find t so that poly3_val(coefs, t) = ll.y
|
||
t = newton_rapshon(function(x) {
|
||
return (poly3_val(coefs, x) - ll.y) / poly3_der(coefs, x);
|
||
}, t, EPSLN, 100);
|
||
|
||
ll.x /= poly3_val(COEFS_X[i], t);
|
||
ll.y = (5 * i + t) * D2R;
|
||
if (xy.y < 0) {
|
||
ll.y = -ll.y;
|
||
}
|
||
}
|
||
|
||
ll.x = adjust_lon(ll.x + this.long0);
|
||
return ll;
|
||
}
|
||
|
||
var names$29 = ["Robinson", "robin"];
|
||
var robin = {
|
||
init: init$28,
|
||
forward: forward$27,
|
||
inverse: inverse$27,
|
||
names: names$29
|
||
};
|
||
|
||
function init$29() {
|
||
this.name = 'geocent';
|
||
|
||
}
|
||
|
||
function forward$28(p) {
|
||
var point = geodeticToGeocentric(p, this.es, this.a);
|
||
return point;
|
||
}
|
||
|
||
function inverse$28(p) {
|
||
var point = geocentricToGeodetic(p, this.es, this.a, this.b);
|
||
return point;
|
||
}
|
||
|
||
var names$30 = ["Geocentric", 'geocentric', "geocent", "Geocent"];
|
||
var geocent = {
|
||
init: init$29,
|
||
forward: forward$28,
|
||
inverse: inverse$28,
|
||
names: names$30
|
||
};
|
||
|
||
var mode = {
|
||
N_POLE: 0,
|
||
S_POLE: 1,
|
||
EQUIT: 2,
|
||
OBLIQ: 3
|
||
};
|
||
|
||
var params = {
|
||
h: { def: 100000, num: true }, // default is Karman line, no default in PROJ.7
|
||
azi: { def: 0, num: true, degrees: true }, // default is North
|
||
tilt: { def: 0, num: true, degrees: true }, // default is Nadir
|
||
long0: { def: 0, num: true }, // default is Greenwich, conversion to rad is automatic
|
||
lat0: { def: 0, num: true } // default is Equator, conversion to rad is automatic
|
||
};
|
||
|
||
function init$30() {
|
||
Object.keys(params).forEach(function (p) {
|
||
if (typeof this[p] === "undefined") {
|
||
this[p] = params[p].def;
|
||
} else if (params[p].num && isNaN(this[p])) {
|
||
throw new Error("Invalid parameter value, must be numeric " + p + " = " + this[p]);
|
||
} else if (params[p].num) {
|
||
this[p] = parseFloat(this[p]);
|
||
}
|
||
if (params[p].degrees) {
|
||
this[p] = this[p] * D2R;
|
||
}
|
||
}.bind(this));
|
||
|
||
if (Math.abs((Math.abs(this.lat0) - HALF_PI)) < EPSLN) {
|
||
this.mode = this.lat0 < 0 ? mode.S_POLE : mode.N_POLE;
|
||
} else if (Math.abs(this.lat0) < EPSLN) {
|
||
this.mode = mode.EQUIT;
|
||
} else {
|
||
this.mode = mode.OBLIQ;
|
||
this.sinph0 = Math.sin(this.lat0);
|
||
this.cosph0 = Math.cos(this.lat0);
|
||
}
|
||
|
||
this.pn1 = this.h / this.a; // Normalize relative to the Earth's radius
|
||
|
||
if (this.pn1 <= 0 || this.pn1 > 1e10) {
|
||
throw new Error("Invalid height");
|
||
}
|
||
|
||
this.p = 1 + this.pn1;
|
||
this.rp = 1 / this.p;
|
||
this.h1 = 1 / this.pn1;
|
||
this.pfact = (this.p + 1) * this.h1;
|
||
this.es = 0;
|
||
|
||
var omega = this.tilt;
|
||
var gamma = this.azi;
|
||
this.cg = Math.cos(gamma);
|
||
this.sg = Math.sin(gamma);
|
||
this.cw = Math.cos(omega);
|
||
this.sw = Math.sin(omega);
|
||
}
|
||
|
||
function forward$29(p) {
|
||
p.x -= this.long0;
|
||
var sinphi = Math.sin(p.y);
|
||
var cosphi = Math.cos(p.y);
|
||
var coslam = Math.cos(p.x);
|
||
var x, y;
|
||
switch (this.mode) {
|
||
case mode.OBLIQ:
|
||
y = this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
|
||
break;
|
||
case mode.EQUIT:
|
||
y = cosphi * coslam;
|
||
break;
|
||
case mode.S_POLE:
|
||
y = -sinphi;
|
||
break;
|
||
case mode.N_POLE:
|
||
y = sinphi;
|
||
break;
|
||
}
|
||
y = this.pn1 / (this.p - y);
|
||
x = y * cosphi * Math.sin(p.x);
|
||
|
||
switch (this.mode) {
|
||
case mode.OBLIQ:
|
||
y *= this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
|
||
break;
|
||
case mode.EQUIT:
|
||
y *= sinphi;
|
||
break;
|
||
case mode.N_POLE:
|
||
y *= -(cosphi * coslam);
|
||
break;
|
||
case mode.S_POLE:
|
||
y *= cosphi * coslam;
|
||
break;
|
||
}
|
||
|
||
// Tilt
|
||
var yt, ba;
|
||
yt = y * this.cg + x * this.sg;
|
||
ba = 1 / (yt * this.sw * this.h1 + this.cw);
|
||
x = (x * this.cg - y * this.sg) * this.cw * ba;
|
||
y = yt * ba;
|
||
|
||
p.x = x * this.a;
|
||
p.y = y * this.a;
|
||
return p;
|
||
}
|
||
|
||
function inverse$29(p) {
|
||
p.x /= this.a;
|
||
p.y /= this.a;
|
||
var r = { x: p.x, y: p.y };
|
||
|
||
// Un-Tilt
|
||
var bm, bq, yt;
|
||
yt = 1 / (this.pn1 - p.y * this.sw);
|
||
bm = this.pn1 * p.x * yt;
|
||
bq = this.pn1 * p.y * this.cw * yt;
|
||
p.x = bm * this.cg + bq * this.sg;
|
||
p.y = bq * this.cg - bm * this.sg;
|
||
|
||
var rh = hypot(p.x, p.y);
|
||
if (Math.abs(rh) < EPSLN) {
|
||
r.x = 0;
|
||
r.y = p.y;
|
||
} else {
|
||
var cosz, sinz;
|
||
sinz = 1 - rh * rh * this.pfact;
|
||
sinz = (this.p - Math.sqrt(sinz)) / (this.pn1 / rh + rh / this.pn1);
|
||
cosz = Math.sqrt(1 - sinz * sinz);
|
||
switch (this.mode) {
|
||
case mode.OBLIQ:
|
||
r.y = Math.asin(cosz * this.sinph0 + p.y * sinz * this.cosph0 / rh);
|
||
p.y = (cosz - this.sinph0 * Math.sin(r.y)) * rh;
|
||
p.x *= sinz * this.cosph0;
|
||
break;
|
||
case mode.EQUIT:
|
||
r.y = Math.asin(p.y * sinz / rh);
|
||
p.y = cosz * rh;
|
||
p.x *= sinz;
|
||
break;
|
||
case mode.N_POLE:
|
||
r.y = Math.asin(cosz);
|
||
p.y = -p.y;
|
||
break;
|
||
case mode.S_POLE:
|
||
r.y = -Math.asin(cosz);
|
||
break;
|
||
}
|
||
r.x = Math.atan2(p.x, p.y);
|
||
}
|
||
|
||
p.x = r.x + this.long0;
|
||
p.y = r.y;
|
||
return p;
|
||
}
|
||
|
||
var names$31 = ["Tilted_Perspective", "tpers"];
|
||
var tpers = {
|
||
init: init$30,
|
||
forward: forward$29,
|
||
inverse: inverse$29,
|
||
names: names$31
|
||
};
|
||
|
||
function init$31() {
|
||
this.flip_axis = (this.sweep === 'x' ? 1 : 0);
|
||
this.h = Number(this.h);
|
||
this.radius_g_1 = this.h / this.a;
|
||
|
||
if (this.radius_g_1 <= 0 || this.radius_g_1 > 1e10) {
|
||
throw new Error();
|
||
}
|
||
|
||
this.radius_g = 1.0 + this.radius_g_1;
|
||
this.C = this.radius_g * this.radius_g - 1.0;
|
||
|
||
if (this.es !== 0.0) {
|
||
var one_es = 1.0 - this.es;
|
||
var rone_es = 1 / one_es;
|
||
|
||
this.radius_p = Math.sqrt(one_es);
|
||
this.radius_p2 = one_es;
|
||
this.radius_p_inv2 = rone_es;
|
||
|
||
this.shape = 'ellipse'; // Use as a condition in the forward and inverse functions.
|
||
} else {
|
||
this.radius_p = 1.0;
|
||
this.radius_p2 = 1.0;
|
||
this.radius_p_inv2 = 1.0;
|
||
|
||
this.shape = 'sphere'; // Use as a condition in the forward and inverse functions.
|
||
}
|
||
|
||
if (!this.title) {
|
||
this.title = "Geostationary Satellite View";
|
||
}
|
||
}
|
||
|
||
function forward$30(p) {
|
||
var lon = p.x;
|
||
var lat = p.y;
|
||
var tmp, v_x, v_y, v_z;
|
||
lon = lon - this.long0;
|
||
|
||
if (this.shape === 'ellipse') {
|
||
lat = Math.atan(this.radius_p2 * Math.tan(lat));
|
||
var r = this.radius_p / hypot(this.radius_p * Math.cos(lat), Math.sin(lat));
|
||
|
||
v_x = r * Math.cos(lon) * Math.cos(lat);
|
||
v_y = r * Math.sin(lon) * Math.cos(lat);
|
||
v_z = r * Math.sin(lat);
|
||
|
||
if (((this.radius_g - v_x) * v_x - v_y * v_y - v_z * v_z * this.radius_p_inv2) < 0.0) {
|
||
p.x = Number.NaN;
|
||
p.y = Number.NaN;
|
||
return p;
|
||
}
|
||
|
||
tmp = this.radius_g - v_x;
|
||
if (this.flip_axis) {
|
||
p.x = this.radius_g_1 * Math.atan(v_y / hypot(v_z, tmp));
|
||
p.y = this.radius_g_1 * Math.atan(v_z / tmp);
|
||
} else {
|
||
p.x = this.radius_g_1 * Math.atan(v_y / tmp);
|
||
p.y = this.radius_g_1 * Math.atan(v_z / hypot(v_y, tmp));
|
||
}
|
||
} else if (this.shape === 'sphere') {
|
||
tmp = Math.cos(lat);
|
||
v_x = Math.cos(lon) * tmp;
|
||
v_y = Math.sin(lon) * tmp;
|
||
v_z = Math.sin(lat);
|
||
tmp = this.radius_g - v_x;
|
||
|
||
if (this.flip_axis) {
|
||
p.x = this.radius_g_1 * Math.atan(v_y / hypot(v_z, tmp));
|
||
p.y = this.radius_g_1 * Math.atan(v_z / tmp);
|
||
} else {
|
||
p.x = this.radius_g_1 * Math.atan(v_y / tmp);
|
||
p.y = this.radius_g_1 * Math.atan(v_z / hypot(v_y, tmp));
|
||
}
|
||
}
|
||
p.x = p.x * this.a;
|
||
p.y = p.y * this.a;
|
||
return p;
|
||
}
|
||
|
||
function inverse$30(p) {
|
||
var v_x = -1.0;
|
||
var v_y = 0.0;
|
||
var v_z = 0.0;
|
||
var a, b, det, k;
|
||
|
||
p.x = p.x / this.a;
|
||
p.y = p.y / this.a;
|
||
|
||
if (this.shape === 'ellipse') {
|
||
if (this.flip_axis) {
|
||
v_z = Math.tan(p.y / this.radius_g_1);
|
||
v_y = Math.tan(p.x / this.radius_g_1) * hypot(1.0, v_z);
|
||
} else {
|
||
v_y = Math.tan(p.x / this.radius_g_1);
|
||
v_z = Math.tan(p.y / this.radius_g_1) * hypot(1.0, v_y);
|
||
}
|
||
|
||
var v_zp = v_z / this.radius_p;
|
||
a = v_y * v_y + v_zp * v_zp + v_x * v_x;
|
||
b = 2 * this.radius_g * v_x;
|
||
det = (b * b) - 4 * a * this.C;
|
||
|
||
if (det < 0.0) {
|
||
p.x = Number.NaN;
|
||
p.y = Number.NaN;
|
||
return p;
|
||
}
|
||
|
||
k = (-b - Math.sqrt(det)) / (2.0 * a);
|
||
v_x = this.radius_g + k * v_x;
|
||
v_y *= k;
|
||
v_z *= k;
|
||
|
||
p.x = Math.atan2(v_y, v_x);
|
||
p.y = Math.atan(v_z * Math.cos(p.x) / v_x);
|
||
p.y = Math.atan(this.radius_p_inv2 * Math.tan(p.y));
|
||
} else if (this.shape === 'sphere') {
|
||
if (this.flip_axis) {
|
||
v_z = Math.tan(p.y / this.radius_g_1);
|
||
v_y = Math.tan(p.x / this.radius_g_1) * Math.sqrt(1.0 + v_z * v_z);
|
||
} else {
|
||
v_y = Math.tan(p.x / this.radius_g_1);
|
||
v_z = Math.tan(p.y / this.radius_g_1) * Math.sqrt(1.0 + v_y * v_y);
|
||
}
|
||
|
||
a = v_y * v_y + v_z * v_z + v_x * v_x;
|
||
b = 2 * this.radius_g * v_x;
|
||
det = (b * b) - 4 * a * this.C;
|
||
if (det < 0.0) {
|
||
p.x = Number.NaN;
|
||
p.y = Number.NaN;
|
||
return p;
|
||
}
|
||
|
||
k = (-b - Math.sqrt(det)) / (2.0 * a);
|
||
v_x = this.radius_g + k * v_x;
|
||
v_y *= k;
|
||
v_z *= k;
|
||
|
||
p.x = Math.atan2(v_y, v_x);
|
||
p.y = Math.atan(v_z * Math.cos(p.x) / v_x);
|
||
}
|
||
p.x = p.x + this.long0;
|
||
return p;
|
||
}
|
||
|
||
var names$32 = ["Geostationary Satellite View", "Geostationary_Satellite", "geos"];
|
||
var geos = {
|
||
init: init$31,
|
||
forward: forward$30,
|
||
inverse: inverse$30,
|
||
names: names$32,
|
||
};
|
||
|
||
var includedProjections = function(proj4){
|
||
proj4.Proj.projections.add(tmerc);
|
||
proj4.Proj.projections.add(etmerc);
|
||
proj4.Proj.projections.add(utm);
|
||
proj4.Proj.projections.add(sterea);
|
||
proj4.Proj.projections.add(stere);
|
||
proj4.Proj.projections.add(somerc);
|
||
proj4.Proj.projections.add(omerc);
|
||
proj4.Proj.projections.add(lcc);
|
||
proj4.Proj.projections.add(krovak);
|
||
proj4.Proj.projections.add(cass);
|
||
proj4.Proj.projections.add(laea);
|
||
proj4.Proj.projections.add(aea);
|
||
proj4.Proj.projections.add(gnom);
|
||
proj4.Proj.projections.add(cea);
|
||
proj4.Proj.projections.add(eqc);
|
||
proj4.Proj.projections.add(poly);
|
||
proj4.Proj.projections.add(nzmg);
|
||
proj4.Proj.projections.add(mill);
|
||
proj4.Proj.projections.add(sinu);
|
||
proj4.Proj.projections.add(moll);
|
||
proj4.Proj.projections.add(eqdc);
|
||
proj4.Proj.projections.add(vandg);
|
||
proj4.Proj.projections.add(aeqd);
|
||
proj4.Proj.projections.add(ortho);
|
||
proj4.Proj.projections.add(qsc);
|
||
proj4.Proj.projections.add(robin);
|
||
proj4.Proj.projections.add(geocent);
|
||
proj4.Proj.projections.add(tpers);
|
||
proj4.Proj.projections.add(geos);
|
||
};
|
||
|
||
proj4$1.defaultDatum = 'WGS84'; //default datum
|
||
proj4$1.Proj = Projection;
|
||
proj4$1.WGS84 = new proj4$1.Proj('WGS84');
|
||
proj4$1.Point = Point;
|
||
proj4$1.toPoint = toPoint;
|
||
proj4$1.defs = defs;
|
||
proj4$1.nadgrid = nadgrid;
|
||
proj4$1.transform = transform;
|
||
proj4$1.mgrs = mgrs;
|
||
proj4$1.version = '2.9.0';
|
||
includedProjections(proj4$1);
|
||
|
||
return proj4$1;
|
||
|
||
})));
|