// You can do this in the grunt config for each mocha task, see the `options` config // Start the main app logic. function startTests(chai, proj4, testPoints) { var assert = chai.assert; proj4.defs([ ["EPSG:102018", "+proj=gnom +lat_0=90 +lon_0=0 +x_0=6300000 +y_0=6300000 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"], ["testmerc", "+proj=merc +lon_0=5.937 +lat_ts=45.027 +ellps=sphere"], ["testmerc2", "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +units=m +k=1.0 +nadgrids=@null +no_defs"] ]); proj4.defs('esriOnline', 'PROJCS["WGS_1984_Web_Mercator_Auxiliary_Sphere",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Mercator_Auxiliary_Sphere"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER["Standard_Parallel_1",0.0],PARAMETER["Auxiliary_Sphere_Type",0.0],UNIT["Meter",1.0]]'); describe('parse', function() { it('should parse units', function() { assert.equal(proj4.defs('testmerc2').units, 'm'); }); }); describe('proj2proj', function() { it('should work transforming from one projection to another', function() { var sweref99tm = '+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs'; var rt90 = '+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs'; var rslt = proj4(sweref99tm, rt90).forward([319180, 6399862]); assert.closeTo(rslt[0], 1271137.927561178, 0.000001); assert.closeTo(rslt[1], 6404230.291456626, 0.000001); }); it('should work with a proj object', function() { var sweref99tm = proj4('+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs'); var rt90 = proj4('+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs'); var rslt = proj4(sweref99tm, rt90).forward([319180, 6399862]); assert.closeTo(rslt[0], 1271137.927561178, 0.000001); assert.closeTo(rslt[1], 6404230.291456626, 0.000001); }); }); describe('proj4', function() { describe('core', function() { testPoints.forEach(function(testPoint) { describe(testPoint.code, function() { var xyAcc = 2, llAcc = 6; if ('acc' in testPoint) { if ('xy' in testPoint.acc) { xyAcc = testPoint.acc.xy; } if ('ll' in testPoint.acc) { llAcc = testPoint.acc.ll; } } var xyEPSLN = Math.pow(10, - 1 * xyAcc); var llEPSLN = Math.pow(10, - 1 * llAcc); describe('traditional', function() { it('should work with forwards', function() { var proj = new proj4.Proj(testPoint.code); var xy = proj4.transform(proj4.WGS84, proj, proj4.toPoint(testPoint.ll)); assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close'); }); it('should work with backwards', function() { var proj = new proj4.Proj(testPoint.code); var ll = proj4.transform(proj, proj4.WGS84, proj4.toPoint(testPoint.xy)); assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'lng is close'); assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'lat is close'); }); }); describe('new method 2 param', function() { it('shortcut method should work with an array', function() { var xy = proj4(testPoint.code, testPoint.ll); assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close'); }); it('shortcut method should work with an object', function() { var pt = { x: testPoint.ll[0], y: testPoint.ll[1] }; var xy = proj4(testPoint.code, pt); assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close'); }); it('shortcut method should work with a point object', function() { var pt = proj4.toPoint(testPoint.ll); var xy = proj4(testPoint.code, pt); assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close'); }); }); describe('new method 3 param', function() { it('shortcut method should work with an array', function() { var xy = proj4(proj4.WGS84, testPoint.code, testPoint.ll); assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close'); }); it('shortcut method should work with an object', function() { var pt = { x: testPoint.ll[0], y: testPoint.ll[1] }; var xy = proj4(proj4.WGS84, testPoint.code, pt); assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close'); }); it('shortcut method should work with a point object', function() { var pt = proj4.toPoint(testPoint.ll); var xy = proj4(proj4.WGS84, testPoint.code, pt); assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close'); }); }); describe('new method 3 param other way', function() { it('shortcut method should work with an array', function() { var ll = proj4(testPoint.code, proj4.WGS84, testPoint.xy); assert.closeTo(ll[0], testPoint.ll[0], llEPSLN, 'x is close'); assert.closeTo(ll[1], testPoint.ll[1], llEPSLN, 'y is close'); }); it('shortcut method should work with an object', function() { var pt = { x: testPoint.xy[0], y: testPoint.xy[1] }; // in case of geocentric proj we need Z value. if (typeof testPoint.xy[2] === 'number') { pt.z = testPoint.xy[2] } var ll = proj4(testPoint.code, proj4.WGS84, pt); assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close'); assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close'); }); it('shortcut method should work with a point object', function() { var pt = proj4.toPoint(testPoint.xy); var ll = proj4(testPoint.code, proj4.WGS84, pt); assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close'); assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close'); }); }); describe('1 param', function() { it('forwards', function() { var xy = proj4(testPoint.code).forward(testPoint.ll); assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close'); }); it('inverse', function() { var ll = proj4(testPoint.code).inverse(testPoint.xy); assert.closeTo(ll[0], testPoint.ll[0], llEPSLN, 'x is close'); assert.closeTo(ll[1], testPoint.ll[1], llEPSLN, 'y is close'); }); }); describe('proj object', function() { it('should work with a 2 element array', function() { var xy = proj4(new proj4.Proj(testPoint.code), testPoint.ll); assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close'); }); it('should work on element', function() { var xy = proj4(new proj4.Proj(testPoint.code)).forward(testPoint.ll); assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close'); assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close'); }); it('should work 3 element point object', function() { var pt = proj4.toPoint(testPoint.xy); var ll = proj4(new proj4.Proj(testPoint.code), proj4.WGS84, pt); assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close'); assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close'); }); }); describe('proj coord object', function() { it('should not be modified', function() { var expected = {x: 100000, y: 100000}; var inpxy = {x: expected.x, y: expected.y}; proj4('EPSG:3857', proj4.WGS84, inpxy); assert.deepEqual(inpxy, expected, "input is unmodified"); }); }); }); }); }); describe('points', function () { it('should not create a z if none was provided', function() { const result = proj4( 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]', 'PROJCS["OSGB 1936 / British National Grid",GEOGCS["OSGB 1936",DATUM["OSGB_1936",SPHEROID["Airy 1830",6377563.396,299.3249646,AUTHORITY["EPSG","7001"]],AUTHORITY["EPSG","6277"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4277"]],UNIT["metre",1,AUTHORITY["EPSG","9001"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",49],PARAMETER["central_meridian",-2],PARAMETER["scale_factor",0.9996012717],PARAMETER["false_easting",400000],PARAMETER["false_northing",-100000],AUTHORITY["EPSG","27700"],AXIS["Easting",EAST],AXIS["Northing",NORTH]]', {x: -0.12793738, y: 51.507747}); assert.closeTo(result.x, 530018.229301635, 1e-6); assert.closeTo(result.y, 180418.4380560551, 1e-6); assert.equal(result.z, undefined); }); it('should ignore stuff it does not know', function () { var sweref99tm = '+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs'; var rt90 = '+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs'; var rslt = proj4(sweref99tm, rt90).forward({ x: 319180, y: 6399862, z: 0, m: 1000, method: function () { return 'correct answer'; } }); assert.closeTo(rslt.x, 1271137.927561178, 0.000001); assert.closeTo(rslt.y, 6404230.291456626, 0.000001); assert.equal(rslt.z, 0); assert.equal(rslt.m, 1000); assert.equal(rslt.method(), 'correct answer'); }); it('should be able to compute X Y Z M in geocenteric coordinates', function () { var epsg4978 = '+proj=geocent +datum=WGS84 +units=m +no_defs'; var rslt = proj4(epsg4978).forward({ x: -7.76166, y: 39.19685, z: 0, m: 1000, method: function () { return 'correct answer'; } }); assert.closeTo(rslt.x, 4904199.584207411, 0.000001); assert.closeTo(rslt.y, -668448.8153664203, 0.000001); assert.closeTo(rslt.z, 4009276.930771821, 0.000001); assert.equal(rslt.m, 1000); assert.equal(rslt.method(), 'correct answer'); }); }); describe('points array', function () { it('should ignore stuff it does not know', function () { var sweref99tm = '+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs'; var rt90 = '+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs'; var rslt = proj4(sweref99tm, rt90).forward([ 319180, 6399862, 0, 1000, ]); assert.closeTo(rslt[0], 1271137.927561178, 0.000001); assert.closeTo(rslt[1], 6404230.291456626, 0.000001); assert.equal(rslt[2], 0); assert.equal(rslt[3], 1000); }); it('should be able to compute X Y Z M in geocenteric coordinates', function () { var epsg4978 = '+proj=geocent +datum=WGS84 +units=m +no_defs'; var rslt = proj4(epsg4978).forward([ -7.76166, 39.19685, 0, 1000 ]); assert.closeTo(rslt[0], 4904199.584207411, 0.000001); assert.closeTo(rslt[1], -668448.8153664203, 0.000001); assert.closeTo(rslt[2], 4009276.930771821, 0.000001); assert.equal(rslt[3], 1000); }); }); it('should use [x,y] axis order', function() { var enu = 'PROJCS["NAD83 / Massachusetts Mainland", GEOGCS["NAD83", DATUM["North American Datum 1983", SPHEROID["GRS 1980", 6378137.0, 298.257222101, AUTHORITY["EPSG","7019"]], TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","4269"]], PROJECTION["Lambert_Conformal_Conic_2SP", AUTHORITY["EPSG","9802"]], PARAMETER["central_meridian", -71.5], PARAMETER["latitude_of_origin", 41.0], PARAMETER["standard_parallel_1", 42.68333333333334], PARAMETER["false_easting", 200000.0], PARAMETER["false_northing", 750000.0], PARAMETER["scale_factor", 1.0], PARAMETER["standard_parallel_2", 41.71666666666667], UNIT["m", 1.0], AXIS["Easting", EAST], AXIS["Northing", NORTH], AUTHORITY["EPSG","26986"]]'; var neu = 'PROJCS["NAD83 / Massachusetts Mainland NE", GEOGCS["NAD83", DATUM["North American Datum 1983", SPHEROID["GRS 1980", 6378137.0, 298.257222101, AUTHORITY["EPSG","7019"]], TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic latitude", NORTH], AXIS["Geodetic longitude", EAST], AUTHORITY["EPSG","4269"]], PROJECTION["Lambert_Conformal_Conic_2SP", AUTHORITY["EPSG","9802"]], PARAMETER["central_meridian", -71.5], PARAMETER["latitude_of_origin", 41.0], PARAMETER["standard_parallel_1", 42.68333333333334], PARAMETER["false_easting", 200000.0], PARAMETER["false_northing", 750000.0], PARAMETER["scale_factor", 1.0], PARAMETER["standard_parallel_2", 41.71666666666667], UNIT["m", 1.0], AXIS["Northing", NORTH], AXIS["Easting", EAST], AUTHORITY["EPSG","26986"]]'; var rslt = proj4(enu, neu).forward({ x: 10.2, y: 43.4 }); assert.closeTo(rslt.x, 10.2, 0.000001); assert.closeTo(rslt.y, 43.4, 0.000001); }); it('should use correct axis order with proj4.transform()', function() { var enu = 'PROJCS["NAD83 / Massachusetts Mainland", GEOGCS["NAD83", DATUM["North American Datum 1983", SPHEROID["GRS 1980", 6378137.0, 298.257222101, AUTHORITY["EPSG","7019"]], TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","4269"]], PROJECTION["Lambert_Conformal_Conic_2SP", AUTHORITY["EPSG","9802"]], PARAMETER["central_meridian", -71.5], PARAMETER["latitude_of_origin", 41.0], PARAMETER["standard_parallel_1", 42.68333333333334], PARAMETER["false_easting", 200000.0], PARAMETER["false_northing", 750000.0], PARAMETER["scale_factor", 1.0], PARAMETER["standard_parallel_2", 41.71666666666667], UNIT["m", 1.0], AXIS["Easting", EAST], AXIS["Northing", NORTH], AUTHORITY["EPSG","26986"]]'; var neu = 'PROJCS["NAD83 / Massachusetts Mainland NE", GEOGCS["NAD83", DATUM["North American Datum 1983", SPHEROID["GRS 1980", 6378137.0, 298.257222101, AUTHORITY["EPSG","7019"]], TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], AUTHORITY["EPSG","6269"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic latitude", NORTH], AXIS["Geodetic longitude", EAST], AUTHORITY["EPSG","4269"]], PROJECTION["Lambert_Conformal_Conic_2SP", AUTHORITY["EPSG","9802"]], PARAMETER["central_meridian", -71.5], PARAMETER["latitude_of_origin", 41.0], PARAMETER["standard_parallel_1", 42.68333333333334], PARAMETER["false_easting", 200000.0], PARAMETER["false_northing", 750000.0], PARAMETER["scale_factor", 1.0], PARAMETER["standard_parallel_2", 41.71666666666667], UNIT["m", 1.0], AXIS["Northing", NORTH], AXIS["Easting", EAST], AUTHORITY["EPSG","26986"]]'; var rslt = proj4(enu, neu).forward({ x: 10.2, y: 43.4 }, true); assert.closeTo(rslt.x, 43.4, 0.000001); assert.closeTo(rslt.y, 10.2, 0.000001); }); it('axes should be invertable with proj4.transform()', function () { var enu = '+proj=longlat +axis=enu'; var esu = '+proj=longlat +axis=esu'; var wnu = '+proj=longlat +axis=wnu'; var result = proj4(enu, esu).forward({x: 40, y: 50}, true); assert.closeTo(result.x, 40, 0.000001); assert.closeTo(result.y, -50, 0.000001); var result = proj4(enu, wnu).forward({x: 40, y: 50}, true); assert.closeTo(result.x, -40, 0.000001); assert.closeTo(result.y, 50, 0.000001); }); describe('defs', function () { assert.equal(proj4.defs('testmerc'), proj4.defs['testmerc']); proj4.defs('foo', '+proj=merc +lon_0=5.937 +lat_ts=45.027 +ellps=sphere'); assert.typeOf(proj4.defs['foo'], 'object'); proj4.defs('urn:x-ogc:def:crs:EPSG:4326', proj4.defs('EPSG:4326')); assert.strictEqual(proj4.defs['urn:x-ogc:def:crs:EPSG:4326'], proj4.defs['EPSG:4326']); describe('wkt', function () { it('should provide the correct conversion factor for WKT GEOGCS projections', function () { proj4.defs('EPSG:4269', 'GEOGCS["NAD83",DATUM["North_American_Datum_1983",SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6269"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4269"]]'); assert.equal(proj4.defs['EPSG:4269'].to_meter, 6378137 * 0.01745329251994328); proj4.defs('EPSG:4279', 'GEOGCS["OS(SN)80",DATUM["OS_SN_1980",SPHEROID["Airy 1830",6377563.396,299.3249646,AUTHORITY["EPSG","7001"]],AUTHORITY["EPSG","6279"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4279"]]'); assert.equal(proj4.defs['EPSG:4279'].to_meter, 6377563.396 * 0.01745329251994328); }); it('should parse wkt and proj4 of the same crs and result in the same params', function () { var s1 = 'GEOGCS["PSD93",DATUM["PDO_Survey_Datum_1993",SPHEROID["Clarke 1880 (RGS)",6378249.145,293.465,AUTHORITY["EPSG","7012"]],TOWGS84[-180.624,-225.516,173.919,-0.81,-1.898,8.336,16.7101],AUTHORITY["EPSG","6134"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4134"]]'; var s2 = '+proj=longlat +ellps=clrk80 +towgs84=-180.624,-225.516,173.919,-0.81,-1.898,8.336,16.7101 +no_defs'; var crs1 = proj4(s1); var crs2 = proj4(s2); assert.equal(crs1.oProj.a, crs2.oProj.a); // proj4 has different ellipsoid parameters that EPSG: http://epsg.io/4134 // assert.equal(crs1.oProj.b, crs2.oProj.b); }); it('should handled defined points correctly', function () { var prj = '+proj=utm +zone=31'; var proj = proj4(prj); var res = proj.forward([3, 0]); assert.deepEqual(res, [500000, 0]); }); }); }); describe('errors', function() { it('should throw an error for an unknown ref', function() { assert.throws(function() { new proj4.Proj('fake one'); }, 'fake one', 'should work'); }); it('should throw when passed null', function() { assert.throws(function() { proj4('+proj=utm +zone=31', [null, 0]); }, 'coordinates must be finite numbers', 'should work'); }); it('should throw when passed NaN', function() { assert.throws(function() { proj4('+proj=utm +zone=31', [0, NaN]); }, 'coordinates must be finite numbers', 'should work'); }); it('should throw when passed Infinity', function() { assert.throws(function() { proj4('+proj=utm +zone=31', [Infinity, 0]); }, 'coordinates must be finite numbers', 'should work'); }); it('should throw when passed -Infinity', function() { assert.throws(function() { proj4('+proj=utm +zone=31', [-Infinity, 0]); }, 'coordinates must be finite numbers', 'should work'); }); }); describe('utility', function() { it('should have MGRS available in the proj4.util namespace', function() { assert.typeOf(proj4.mgrs, "object", "MGRS available in the proj4.util namespace"); }); it('should have fromMGRS method added to proj4.Point prototype', function() { assert.typeOf(proj4.Point.fromMGRS, "function", "fromMGRS method added to proj4.Point prototype"); }); it('should have toMGRS method added to proj4.Point prototype', function() { assert.typeOf(proj4.Point.prototype.toMGRS, "function", "toMGRS method added to proj4.Point prototype"); }); describe('First MGRS set', function() { var mgrs = "33UXP04"; var point = proj4.Point.fromMGRS(mgrs); it('Longitude of point from MGRS correct.', function() { assert.equal(point.x.toPrecision(7), "16.41450", "Longitude of point from MGRS correct."); }); it('Latitude of point from MGRS correct.', function() { assert.equal(point.y.toPrecision(7), "48.24949", "Latitude of point from MGRS correct."); }); it('MGRS reference with highest accuracy correct.', function() { assert.equal(point.toMGRS(), "33UXP0500444998", "MGRS reference with highest accuracy correct."); }); it('MGRS reference with 1-digit accuracy correct.', function() { assert.equal(point.toMGRS(1), mgrs, "MGRS reference with 1-digit accuracy correct."); }); }); describe('Second MGRS set', function() { var mgrs = "24XWT783908"; // near UTM zone border, so there are two ways to reference this var point = proj4.Point.fromMGRS(mgrs); it("Longitude of point from MGRS correct.", function() { assert.equal(point.x.toPrecision(7), "-32.66433", "Longitude of point from MGRS correct."); }); it("Latitude of point from MGRS correct.", function() { assert.equal(point.y.toPrecision(7), "83.62778", "Latitude of point from MGRS correct."); }); it("MGRS reference with 3-digit accuracy correct.", function() { assert.equal(point.toMGRS(3), "25XEN041865", "MGRS reference with 3-digit accuracy correct."); }); }); describe('Defs and Datum definition', function() { proj4.defs("EPSG:5514", "+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +alpha=30.28813972222222 +k=0.9999 +x_0=0 +y_0=0 +ellps=bessel +pm=greenwich +units=m +no_defs +towgs84=570.8,85.7,462.8,4.998,1.587,5.261,3.56"); var point = proj4.transform(proj4.Proj("WGS84"), proj4.Proj("EPSG:5514"), proj4.toPoint([12.806988, 49.452262])); it("Longitude of point from WGS84 correct.", function() { assert.equal(point.x.toPrecision(8), "-868208.61", "Longitude of point from WGS84 correct."); }); it("Latitude of point from WGS84 correct.", function() { assert.equal(point.y.toPrecision(9), "-1095793.64", "Latitude of point from WGS84 correct."); }); var point2 = proj4.transform(proj4.Proj("WGS84"), proj4.Proj("EPSG:5514"), proj4.toPoint([12.806988, 49.452262])); it("Longitude of point from WGS84 with second call for EPSG:5514 correct.", function() { assert.equal(point2.x.toPrecision(8), "-868208.61", "Longitude of point from WGS84 correct."); }); it("Latitude of point from WGS84 with second call for EPSG:5514 correct.", function() { assert.equal(point2.y.toPrecision(9), "-1095793.64", "Latitude of point from WGS84 correct."); }); }); }); describe('Nadgrids BETA2007', function() { var tests = [ ['EPSG:31466', 'EPSG:4326', 2559552, 5670982, 6.850861772, 51.170707759, 0.0000001, 0.01], ['EPSG:31466', 'EPSG:3857', 2559552, 5670982, 762634.443931574, 6651545.680265270, 0.01, 0.01], ['EPSG:31466', 'EPSG:25832', 2559552, 5670982, 349757.381712518, 5671004.065049540, 0.01, 0.01], ]; function initializeNadgrid(buffer) { proj4.nadgrid('BETA2007.gsb', buffer); proj4.defs('EPSG:31466', '+proj=tmerc +lat_0=0 +lon_0=6 +k=1 +x_0=2500000 +y_0=0 +ellps=bessel +nadgrids=BETA2007.gsb +units=m +no_defs +type=crs'); proj4.defs('EPSG:25832', '+proj=utm +zone=32 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs +type=crs'); } before(function(done) { if (typeof XMLHttpRequest !== 'undefined') { const xhr = new XMLHttpRequest(); xhr.open('GET', 'BETA2007.gsb', true); xhr.responseType = 'arraybuffer'; xhr.addEventListener('load', function() { initializeNadgrid(xhr.response); done(); }); xhr.addEventListener('error', done); xhr.send(); } else if (typeof require === 'function') { const fs = require('fs'); const path = require('path'); fs.readFile(path.join(__dirname, 'BETA2007.gsb'), function(err, data) { if (err) { done(err); } else { initializeNadgrid(data.buffer); done(); } }) } }); tests.forEach(function(test) { var fromProj = test[0]; var toProj = test[1]; var fromX = test[2]; var fromY = test[3]; var toX = test[4]; var toY = test[5]; var fromPrecision = test[6]; var toPrecision = test[7]; it('should transform ' + fromProj + ' to ' + toProj, function () { var transformed = proj4(fromProj, toProj, [fromX, fromY]); assert.approximately(transformed[0], toX, fromPrecision); assert.approximately(transformed[1], toY, fromPrecision); }); it('should transform ' + toProj + ' to ' + fromProj, function () { var transformed = proj4(toProj, fromProj, [toX, toY]); assert.approximately(transformed[0], fromX, toPrecision); assert.approximately(transformed[1], fromY, toPrecision); }); }); }); describe('Nadgrids ntv2', function() { var tests = [ [-44.382211538462, 40.3768, -44.380749, 40.377457], // just inside the lower limit [-87.617788, 59.623262, -87.617659, 59.623441], // just inside the upper limit [-44.5, 40.5, -44.498553, 40.500632], // inside the first square [-60, 50, -59.999192, 50.000058], // a general point towards the middle of the grid [0, 0, 0, 0] // fall back to null ]; var converter; function initializeNadgrid(buffer) { proj4.nadgrid('ntv2', buffer); proj4.defs('ntv2_from', '+proj=longlat +ellps=clrk66 +nadgrids=@ignorable,ntv2,null'); proj4.defs('ntv2_to', '+proj=longlat +datum=WGS84 +no_defs'); converter = proj4('ntv2_from', 'ntv2_to'); } before(function(done) { if (typeof XMLHttpRequest !== 'undefined') { const xhr = new XMLHttpRequest(); xhr.open('GET', 'ntv2_0_downsampled.gsb', true); xhr.responseType = 'arraybuffer'; xhr.addEventListener('load', function() { initializeNadgrid(xhr.response); done(); }); xhr.addEventListener('error', done); xhr.send(); } else if (typeof require === 'function') { const fs = require('fs'); const path = require('path'); fs.readFile(path.join(__dirname, 'ntv2_0_downsampled.gsb'), function(err, data) { if (err) { done(err); } else { initializeNadgrid(data.buffer); done(); } }) } }); tests.forEach(function(test) { var fromLng = test[0]; var fromLat = test[1]; var toLng = test[2]; var toLat = test[3]; it('should interpolate ' + [fromLng, fromLat] + ' to ' + [toLng, toLat], function () { var actual = converter.forward([fromLng, fromLat]); assert.approximately(actual[0], toLng, 0.000001); assert.approximately(actual[1], toLat, 0.000001); }); }); var inverseTests = [ [-44.5, 40.5, -44.498553, 40.500632], [-60, 50, -59.999192, 50.000058] ]; inverseTests.forEach(function(test) { var fromLng = test[0]; var fromLat = test[1]; var toLng = test[2]; var toLat = test[3]; it('should inverse interpolate ' + [toLng, toLat] + ' to ' + [fromLng, fromLat], function () { var actual = converter.inverse([toLng, toLat]); assert.approximately(actual[0], fromLng, 0.000001); assert.approximately(actual[1], fromLat, 0.000001); }); }); }); }); } if(typeof process !== 'undefined'&&process.toString() === '[object process]'){ (function(){ startTests(require('chai'), require('../dist/proj4-src'), require('./testData')); })(); }