/* references: Formules et constantes pour le Calcul pour la projection cylindrique conforme à axe oblique et pour la transformation entre des systèmes de référence. http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf */ export function init() { var phy0 = this.lat0; this.lambda0 = this.long0; var sinPhy0 = Math.sin(phy0); var semiMajorAxis = this.a; var invF = this.rf; var flattening = 1 / invF; var e2 = 2 * flattening - Math.pow(flattening, 2); var e = this.e = Math.sqrt(e2); this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2)); this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4)); this.b0 = Math.asin(sinPhy0 / this.alpha); var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2)); var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2)); var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0)); this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3; } export function forward(p) { var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2)); var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y))); var S = -this.alpha * (Sa1 + Sa2) + this.K; // spheric latitude var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4); // spheric longitude var I = this.alpha * (p.x - this.lambda0); // psoeudo equatorial rotation var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I))); var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I)); p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0; p.x = this.R * rotI + this.x0; return p; } export function inverse(p) { var Y = p.x - this.x0; var X = p.y - this.y0; var rotI = Y / this.R; var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4); var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI)); var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB))); var lambda = this.lambda0 + I / this.alpha; var S = 0; var phy = b; var prevPhy = -1000; var iteration = 0; while (Math.abs(phy - prevPhy) > 0.0000001) { if (++iteration > 20) { //...reportError("omercFwdInfinity"); return; } //S = Math.log(Math.tan(Math.PI / 4 + phy / 2)); S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2)); prevPhy = phy; phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2; } p.x = lambda; p.y = phy; return p; } export var names = ["somerc"]; export default { init: init, forward: forward, inverse: inverse, names: names };