import {HALF_PI, EPSLN, FORTPI} from '../constants/values'; import qsfnz from '../common/qsfnz'; import adjust_lon from '../common/adjust_lon'; /* reference "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. */ export var S_POLE = 1; export var N_POLE = 2; export var EQUIT = 3; export var OBLIQ = 4; /* Initialize the Lambert Azimuthal Equal Area projection ------------------------------------------------------*/ export function init() { var t = Math.abs(this.lat0); if (Math.abs(t - HALF_PI) < EPSLN) { this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE; } else if (Math.abs(t) < EPSLN) { this.mode = this.EQUIT; } else { this.mode = this.OBLIQ; } if (this.es > 0) { var sinphi; this.qp = qsfnz(this.e, 1); this.mmf = 0.5 / (1 - this.es); this.apa = authset(this.es); switch (this.mode) { case this.N_POLE: this.dd = 1; break; case this.S_POLE: this.dd = 1; break; case this.EQUIT: this.rq = Math.sqrt(0.5 * this.qp); this.dd = 1 / this.rq; this.xmf = 1; this.ymf = 0.5 * this.qp; break; case this.OBLIQ: this.rq = Math.sqrt(0.5 * this.qp); sinphi = Math.sin(this.lat0); this.sinb1 = qsfnz(this.e, sinphi) / this.qp; this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1); this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1); this.ymf = (this.xmf = this.rq) / this.dd; this.xmf *= this.dd; break; } } else { if (this.mode === this.OBLIQ) { this.sinph0 = Math.sin(this.lat0); this.cosph0 = Math.cos(this.lat0); } } } /* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y -----------------------------------------------------------------------*/ export function forward(p) { /* Forward equations -----------------*/ var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi; var lam = p.x; var phi = p.y; lam = adjust_lon(lam - this.long0); if (this.sphere) { sinphi = Math.sin(phi); cosphi = Math.cos(phi); coslam = Math.cos(lam); if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam; if (y <= EPSLN) { return null; } y = Math.sqrt(2 / y); x = y * cosphi * Math.sin(lam); y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam; } else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { if (this.mode === this.N_POLE) { coslam = -coslam; } if (Math.abs(phi + this.lat0) < EPSLN) { return null; } y = FORTPI - phi * 0.5; y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y)); x = y * Math.sin(lam); y *= coslam; } } else { sinb = 0; cosb = 0; b = 0; coslam = Math.cos(lam); sinlam = Math.sin(lam); sinphi = Math.sin(phi); q = qsfnz(this.e, sinphi); if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { sinb = q / this.qp; cosb = Math.sqrt(1 - sinb * sinb); } switch (this.mode) { case this.OBLIQ: b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam; break; case this.EQUIT: b = 1 + cosb * coslam; break; case this.N_POLE: b = HALF_PI + phi; q = this.qp - q; break; case this.S_POLE: b = phi - HALF_PI; q = this.qp + q; break; } if (Math.abs(b) < EPSLN) { return null; } switch (this.mode) { case this.OBLIQ: case this.EQUIT: b = Math.sqrt(2 / b); if (this.mode === this.OBLIQ) { y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam); } else { y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf; } x = this.xmf * b * cosb * sinlam; break; case this.N_POLE: case this.S_POLE: if (q >= 0) { x = (b = Math.sqrt(q)) * sinlam; y = coslam * ((this.mode === this.S_POLE) ? b : -b); } else { x = y = 0; } break; } } p.x = this.a * x + this.x0; p.y = this.a * y + this.y0; return p; } /* Inverse equations -----------------*/ export function inverse(p) { p.x -= this.x0; p.y -= this.y0; var x = p.x / this.a; var y = p.y / this.a; var lam, phi, cCe, sCe, q, rho, ab; if (this.sphere) { var cosz = 0, rh, sinz = 0; rh = Math.sqrt(x * x + y * y); phi = rh * 0.5; if (phi > 1) { return null; } phi = 2 * Math.asin(phi); if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { sinz = Math.sin(phi); cosz = Math.cos(phi); } switch (this.mode) { case this.EQUIT: phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh); x *= sinz; y = cosz * rh; break; case this.OBLIQ: phi = (Math.abs(rh) <= EPSLN) ? this.lat0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh); x *= sinz * this.cosph0; y = (cosz - Math.sin(phi) * this.sinph0) * rh; break; case this.N_POLE: y = -y; phi = HALF_PI - phi; break; case this.S_POLE: phi -= HALF_PI; break; } lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y); } else { ab = 0; if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { x /= this.dd; y *= this.dd; rho = Math.sqrt(x * x + y * y); if (rho < EPSLN) { p.x = this.long0; p.y = this.lat0; return p; } sCe = 2 * Math.asin(0.5 * rho / this.rq); cCe = Math.cos(sCe); x *= (sCe = Math.sin(sCe)); if (this.mode === this.OBLIQ) { ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho; q = this.qp * ab; y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe; } else { ab = y * sCe / rho; q = this.qp * ab; y = rho * cCe; } } else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { if (this.mode === this.N_POLE) { y = -y; } q = (x * x + y * y); if (!q) { p.x = this.long0; p.y = this.lat0; return p; } ab = 1 - q / this.qp; if (this.mode === this.S_POLE) { ab = -ab; } } lam = Math.atan2(x, y); phi = authlat(Math.asin(ab), this.apa); } p.x = adjust_lon(this.long0 + lam); p.y = phi; return p; } /* determine latitude from authalic latitude */ var P00 = 0.33333333333333333333; var P01 = 0.17222222222222222222; var P02 = 0.10257936507936507936; var P10 = 0.06388888888888888888; var P11 = 0.06640211640211640211; var P20 = 0.01641501294219154443; function authset(es) { var t; var APA = []; APA[0] = es * P00; t = es * es; APA[0] += t * P01; APA[1] = t * P10; t *= es; APA[0] += t * P02; APA[1] += t * P11; APA[2] = t * P20; return APA; } function authlat(beta, APA) { var t = beta + beta; return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t)); } export var names = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"]; export default { init: init, forward: forward, inverse: inverse, names: names, S_POLE: S_POLE, N_POLE: N_POLE, EQUIT: EQUIT, OBLIQ: OBLIQ };