import adjust_lon from '../common/adjust_lon'; import asinz from '../common/asinz'; import {EPSLN} from '../constants/values'; /* reference: Wolfram Mathworld "Gnomonic Projection" http://mathworld.wolfram.com/GnomonicProjection.html Accessed: 12th November 2009 */ export function init() { /* Place parameters in static storage for common use -------------------------------------------------*/ this.sin_p14 = Math.sin(this.lat0); this.cos_p14 = Math.cos(this.lat0); // Approximation for projecting points to the horizon (infinity) this.infinity_dist = 1000 * this.a; this.rc = 1; } /* Gnomonic forward equations--mapping lat,long to x,y ---------------------------------------------------*/ export function forward(p) { var sinphi, cosphi; /* sin and cos value */ var dlon; /* delta longitude value */ var coslon; /* cos of longitude */ var ksp; /* scale factor */ var g; var x, y; var lon = p.x; var lat = p.y; /* Forward equations -----------------*/ dlon = adjust_lon(lon - this.long0); sinphi = Math.sin(lat); cosphi = Math.cos(lat); coslon = Math.cos(dlon); g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon; ksp = 1; if ((g > 0) || (Math.abs(g) <= EPSLN)) { x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g; y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g; } else { // Point is in the opposing hemisphere and is unprojectable // We still need to return a reasonable point, so we project // to infinity, on a bearing // equivalent to the northern hemisphere equivalent // This is a reasonable approximation for short shapes and lines that // straddle the horizon. x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon); y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon); } p.x = x; p.y = y; return p; } export function inverse(p) { var rh; /* Rho */ var sinc, cosc; var c; var lon, lat; /* Inverse equations -----------------*/ p.x = (p.x - this.x0) / this.a; p.y = (p.y - this.y0) / this.a; p.x /= this.k0; p.y /= this.k0; if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) { c = Math.atan2(rh, this.rc); sinc = Math.sin(c); cosc = Math.cos(c); lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh); lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc); lon = adjust_lon(this.long0 + lon); } else { lat = this.phic0; lon = 0; } p.x = lon; p.y = lat; return p; } export var names = ["gnom"]; export default { init: init, forward: forward, inverse: inverse, names: names };