162 lines
4.9 KiB
JavaScript
162 lines
4.9 KiB
JavaScript
|
// Robinson projection
|
||
|
// Based on https://github.com/OSGeo/proj.4/blob/master/src/PJ_robin.c
|
||
|
// Polynomial coeficients from http://article.gmane.org/gmane.comp.gis.proj-4.devel/6039
|
||
|
|
||
|
import {HALF_PI, D2R, R2D, EPSLN} from '../constants/values';
|
||
|
import adjust_lon from '../common/adjust_lon';
|
||
|
|
||
|
var COEFS_X = [
|
||
|
[1.0000, 2.2199e-17, -7.15515e-05, 3.1103e-06],
|
||
|
[0.9986, -0.000482243, -2.4897e-05, -1.3309e-06],
|
||
|
[0.9954, -0.00083103, -4.48605e-05, -9.86701e-07],
|
||
|
[0.9900, -0.00135364, -5.9661e-05, 3.6777e-06],
|
||
|
[0.9822, -0.00167442, -4.49547e-06, -5.72411e-06],
|
||
|
[0.9730, -0.00214868, -9.03571e-05, 1.8736e-08],
|
||
|
[0.9600, -0.00305085, -9.00761e-05, 1.64917e-06],
|
||
|
[0.9427, -0.00382792, -6.53386e-05, -2.6154e-06],
|
||
|
[0.9216, -0.00467746, -0.00010457, 4.81243e-06],
|
||
|
[0.8962, -0.00536223, -3.23831e-05, -5.43432e-06],
|
||
|
[0.8679, -0.00609363, -0.000113898, 3.32484e-06],
|
||
|
[0.8350, -0.00698325, -6.40253e-05, 9.34959e-07],
|
||
|
[0.7986, -0.00755338, -5.00009e-05, 9.35324e-07],
|
||
|
[0.7597, -0.00798324, -3.5971e-05, -2.27626e-06],
|
||
|
[0.7186, -0.00851367, -7.01149e-05, -8.6303e-06],
|
||
|
[0.6732, -0.00986209, -0.000199569, 1.91974e-05],
|
||
|
[0.6213, -0.010418, 8.83923e-05, 6.24051e-06],
|
||
|
[0.5722, -0.00906601, 0.000182, 6.24051e-06],
|
||
|
[0.5322, -0.00677797, 0.000275608, 6.24051e-06]
|
||
|
];
|
||
|
|
||
|
var COEFS_Y = [
|
||
|
[-5.20417e-18, 0.0124, 1.21431e-18, -8.45284e-11],
|
||
|
[0.0620, 0.0124, -1.26793e-09, 4.22642e-10],
|
||
|
[0.1240, 0.0124, 5.07171e-09, -1.60604e-09],
|
||
|
[0.1860, 0.0123999, -1.90189e-08, 6.00152e-09],
|
||
|
[0.2480, 0.0124002, 7.10039e-08, -2.24e-08],
|
||
|
[0.3100, 0.0123992, -2.64997e-07, 8.35986e-08],
|
||
|
[0.3720, 0.0124029, 9.88983e-07, -3.11994e-07],
|
||
|
[0.4340, 0.0123893, -3.69093e-06, -4.35621e-07],
|
||
|
[0.4958, 0.0123198, -1.02252e-05, -3.45523e-07],
|
||
|
[0.5571, 0.0121916, -1.54081e-05, -5.82288e-07],
|
||
|
[0.6176, 0.0119938, -2.41424e-05, -5.25327e-07],
|
||
|
[0.6769, 0.011713, -3.20223e-05, -5.16405e-07],
|
||
|
[0.7346, 0.0113541, -3.97684e-05, -6.09052e-07],
|
||
|
[0.7903, 0.0109107, -4.89042e-05, -1.04739e-06],
|
||
|
[0.8435, 0.0103431, -6.4615e-05, -1.40374e-09],
|
||
|
[0.8936, 0.00969686, -6.4636e-05, -8.547e-06],
|
||
|
[0.9394, 0.00840947, -0.000192841, -4.2106e-06],
|
||
|
[0.9761, 0.00616527, -0.000256, -4.2106e-06],
|
||
|
[1.0000, 0.00328947, -0.000319159, -4.2106e-06]
|
||
|
];
|
||
|
|
||
|
var FXC = 0.8487;
|
||
|
var FYC = 1.3523;
|
||
|
var C1 = R2D/5; // rad to 5-degree interval
|
||
|
var RC1 = 1/C1;
|
||
|
var NODES = 18;
|
||
|
|
||
|
var poly3_val = function(coefs, x) {
|
||
|
return coefs[0] + x * (coefs[1] + x * (coefs[2] + x * coefs[3]));
|
||
|
};
|
||
|
|
||
|
var poly3_der = function(coefs, x) {
|
||
|
return coefs[1] + x * (2 * coefs[2] + x * 3 * coefs[3]);
|
||
|
};
|
||
|
|
||
|
function newton_rapshon(f_df, start, max_err, iters) {
|
||
|
var x = start;
|
||
|
for (; iters; --iters) {
|
||
|
var upd = f_df(x);
|
||
|
x -= upd;
|
||
|
if (Math.abs(upd) < max_err) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
export function init() {
|
||
|
this.x0 = this.x0 || 0;
|
||
|
this.y0 = this.y0 || 0;
|
||
|
this.long0 = this.long0 || 0;
|
||
|
this.es = 0;
|
||
|
this.title = this.title || "Robinson";
|
||
|
}
|
||
|
|
||
|
export function forward(ll) {
|
||
|
var lon = adjust_lon(ll.x - this.long0);
|
||
|
|
||
|
var dphi = Math.abs(ll.y);
|
||
|
var i = Math.floor(dphi * C1);
|
||
|
if (i < 0) {
|
||
|
i = 0;
|
||
|
} else if (i >= NODES) {
|
||
|
i = NODES - 1;
|
||
|
}
|
||
|
dphi = R2D * (dphi - RC1 * i);
|
||
|
var xy = {
|
||
|
x: poly3_val(COEFS_X[i], dphi) * lon,
|
||
|
y: poly3_val(COEFS_Y[i], dphi)
|
||
|
};
|
||
|
if (ll.y < 0) {
|
||
|
xy.y = -xy.y;
|
||
|
}
|
||
|
|
||
|
xy.x = xy.x * this.a * FXC + this.x0;
|
||
|
xy.y = xy.y * this.a * FYC + this.y0;
|
||
|
return xy;
|
||
|
}
|
||
|
|
||
|
export function inverse(xy) {
|
||
|
var ll = {
|
||
|
x: (xy.x - this.x0) / (this.a * FXC),
|
||
|
y: Math.abs(xy.y - this.y0) / (this.a * FYC)
|
||
|
};
|
||
|
|
||
|
if (ll.y >= 1) { // pathologic case
|
||
|
ll.x /= COEFS_X[NODES][0];
|
||
|
ll.y = xy.y < 0 ? -HALF_PI : HALF_PI;
|
||
|
} else {
|
||
|
// find table interval
|
||
|
var i = Math.floor(ll.y * NODES);
|
||
|
if (i < 0) {
|
||
|
i = 0;
|
||
|
} else if (i >= NODES) {
|
||
|
i = NODES - 1;
|
||
|
}
|
||
|
for (;;) {
|
||
|
if (COEFS_Y[i][0] > ll.y) {
|
||
|
--i;
|
||
|
} else if (COEFS_Y[i+1][0] <= ll.y) {
|
||
|
++i;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// linear interpolation in 5 degree interval
|
||
|
var coefs = COEFS_Y[i];
|
||
|
var t = 5 * (ll.y - coefs[0]) / (COEFS_Y[i+1][0] - coefs[0]);
|
||
|
// find t so that poly3_val(coefs, t) = ll.y
|
||
|
t = newton_rapshon(function(x) {
|
||
|
return (poly3_val(coefs, x) - ll.y) / poly3_der(coefs, x);
|
||
|
}, t, EPSLN, 100);
|
||
|
|
||
|
ll.x /= poly3_val(COEFS_X[i], t);
|
||
|
ll.y = (5 * i + t) * D2R;
|
||
|
if (xy.y < 0) {
|
||
|
ll.y = -ll.y;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ll.x = adjust_lon(ll.x + this.long0);
|
||
|
return ll;
|
||
|
}
|
||
|
|
||
|
export var names = ["Robinson", "robin"];
|
||
|
export default {
|
||
|
init: init,
|
||
|
forward: forward,
|
||
|
inverse: inverse,
|
||
|
names: names
|
||
|
};
|