209 lines
6.6 KiB
JavaScript
209 lines
6.6 KiB
JavaScript
|
import adjust_lon from '../common/adjust_lon';
|
||
|
import {HALF_PI, EPSLN} from '../constants/values';
|
||
|
|
||
|
import mlfn from '../common/mlfn';
|
||
|
import e0fn from '../common/e0fn';
|
||
|
import e1fn from '../common/e1fn';
|
||
|
import e2fn from '../common/e2fn';
|
||
|
import e3fn from '../common/e3fn';
|
||
|
import gN from '../common/gN';
|
||
|
import asinz from '../common/asinz';
|
||
|
import imlfn from '../common/imlfn';
|
||
|
|
||
|
|
||
|
|
||
|
export function init() {
|
||
|
this.sin_p12 = Math.sin(this.lat0);
|
||
|
this.cos_p12 = Math.cos(this.lat0);
|
||
|
}
|
||
|
|
||
|
export function forward(p) {
|
||
|
var lon = p.x;
|
||
|
var lat = p.y;
|
||
|
var sinphi = Math.sin(p.y);
|
||
|
var cosphi = Math.cos(p.y);
|
||
|
var dlon = adjust_lon(lon - this.long0);
|
||
|
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
|
||
|
if (this.sphere) {
|
||
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
|
//North Pole case
|
||
|
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
|
||
|
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
|
||
|
return p;
|
||
|
}
|
||
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
|
//South Pole case
|
||
|
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
|
||
|
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
|
||
|
return p;
|
||
|
}
|
||
|
else {
|
||
|
//default case
|
||
|
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
|
||
|
c = Math.acos(cos_c);
|
||
|
kp = c ? c / Math.sin(c) : 1;
|
||
|
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
|
||
|
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
e0 = e0fn(this.es);
|
||
|
e1 = e1fn(this.es);
|
||
|
e2 = e2fn(this.es);
|
||
|
e3 = e3fn(this.es);
|
||
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
|
//North Pole case
|
||
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
|
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||
|
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
|
||
|
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
|
||
|
return p;
|
||
|
}
|
||
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
|
//South Pole case
|
||
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
|
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
|
||
|
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
|
||
|
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
|
||
|
return p;
|
||
|
}
|
||
|
else {
|
||
|
//Default case
|
||
|
tanphi = sinphi / cosphi;
|
||
|
Nl1 = gN(this.a, this.e, this.sin_p12);
|
||
|
Nl = gN(this.a, this.e, sinphi);
|
||
|
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
|
||
|
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
|
||
|
if (Az === 0) {
|
||
|
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||
|
}
|
||
|
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
|
||
|
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
|
||
|
}
|
||
|
else {
|
||
|
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
|
||
|
}
|
||
|
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
|
||
|
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
|
||
|
GH = G * H;
|
||
|
Hs = H * H;
|
||
|
s2 = s * s;
|
||
|
s3 = s2 * s;
|
||
|
s4 = s3 * s;
|
||
|
s5 = s4 * s;
|
||
|
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
|
||
|
p.x = this.x0 + c * Math.sin(Az);
|
||
|
p.y = this.y0 + c * Math.cos(Az);
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
export function inverse(p) {
|
||
|
p.x -= this.x0;
|
||
|
p.y -= this.y0;
|
||
|
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F, sinpsi;
|
||
|
if (this.sphere) {
|
||
|
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
if (rh > (2 * HALF_PI * this.a)) {
|
||
|
return;
|
||
|
}
|
||
|
z = rh / this.a;
|
||
|
|
||
|
sinz = Math.sin(z);
|
||
|
cosz = Math.cos(z);
|
||
|
|
||
|
lon = this.long0;
|
||
|
if (Math.abs(rh) <= EPSLN) {
|
||
|
lat = this.lat0;
|
||
|
}
|
||
|
else {
|
||
|
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
|
||
|
con = Math.abs(this.lat0) - HALF_PI;
|
||
|
if (Math.abs(con) <= EPSLN) {
|
||
|
if (this.lat0 >= 0) {
|
||
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
|
||
|
}
|
||
|
else {
|
||
|
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/*con = cosz - this.sin_p12 * Math.sin(lat);
|
||
|
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
|
||
|
//no-op, just keep the lon value as is
|
||
|
} else {
|
||
|
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
|
||
|
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
|
||
|
}*/
|
||
|
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
else {
|
||
|
e0 = e0fn(this.es);
|
||
|
e1 = e1fn(this.es);
|
||
|
e2 = e2fn(this.es);
|
||
|
e3 = e3fn(this.es);
|
||
|
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
|
||
|
//North pole case
|
||
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
|
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
M = Mlp - rh;
|
||
|
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
|
||
|
//South pole case
|
||
|
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
|
||
|
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
M = rh - Mlp;
|
||
|
|
||
|
lat = imlfn(M / this.a, e0, e1, e2, e3);
|
||
|
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
else {
|
||
|
//default case
|
||
|
rh = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
Az = Math.atan2(p.x, p.y);
|
||
|
N1 = gN(this.a, this.e, this.sin_p12);
|
||
|
cosAz = Math.cos(Az);
|
||
|
tmp = this.e * this.cos_p12 * cosAz;
|
||
|
A = -tmp * tmp / (1 - this.es);
|
||
|
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
|
||
|
D = rh / N1;
|
||
|
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
|
||
|
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
|
||
|
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
|
||
|
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
|
||
|
sinpsi = Math.sin(psi);
|
||
|
lat = Math.atan2((sinpsi - this.es * F * this.sin_p12) * Math.tan(psi), sinpsi * (1 - this.es));
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
export var names = ["Azimuthal_Equidistant", "aeqd"];
|
||
|
export default {
|
||
|
init: init,
|
||
|
forward: forward,
|
||
|
inverse: inverse,
|
||
|
names: names
|
||
|
};
|