130 lines
3.3 KiB
JavaScript
130 lines
3.3 KiB
JavaScript
|
import msfnz from '../common/msfnz';
|
||
|
import qsfnz from '../common/qsfnz';
|
||
|
import adjust_lon from '../common/adjust_lon';
|
||
|
import asinz from '../common/asinz';
|
||
|
import {EPSLN} from '../constants/values';
|
||
|
|
||
|
export function init() {
|
||
|
|
||
|
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
|
||
|
return;
|
||
|
}
|
||
|
this.temp = this.b / this.a;
|
||
|
this.es = 1 - Math.pow(this.temp, 2);
|
||
|
this.e3 = Math.sqrt(this.es);
|
||
|
|
||
|
this.sin_po = Math.sin(this.lat1);
|
||
|
this.cos_po = Math.cos(this.lat1);
|
||
|
this.t1 = this.sin_po;
|
||
|
this.con = this.sin_po;
|
||
|
this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
|
||
|
this.qs1 = qsfnz(this.e3, this.sin_po);
|
||
|
|
||
|
this.sin_po = Math.sin(this.lat2);
|
||
|
this.cos_po = Math.cos(this.lat2);
|
||
|
this.t2 = this.sin_po;
|
||
|
this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
|
||
|
this.qs2 = qsfnz(this.e3, this.sin_po);
|
||
|
|
||
|
this.sin_po = Math.sin(this.lat0);
|
||
|
this.cos_po = Math.cos(this.lat0);
|
||
|
this.t3 = this.sin_po;
|
||
|
this.qs0 = qsfnz(this.e3, this.sin_po);
|
||
|
|
||
|
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
|
||
|
this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
|
||
|
}
|
||
|
else {
|
||
|
this.ns0 = this.con;
|
||
|
}
|
||
|
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
|
||
|
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
|
||
|
}
|
||
|
|
||
|
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
|
||
|
-------------------------------------------------------------------*/
|
||
|
export function forward(p) {
|
||
|
|
||
|
var lon = p.x;
|
||
|
var lat = p.y;
|
||
|
|
||
|
this.sin_phi = Math.sin(lat);
|
||
|
this.cos_phi = Math.cos(lat);
|
||
|
|
||
|
var qs = qsfnz(this.e3, this.sin_phi);
|
||
|
var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
|
||
|
var theta = this.ns0 * adjust_lon(lon - this.long0);
|
||
|
var x = rh1 * Math.sin(theta) + this.x0;
|
||
|
var y = this.rh - rh1 * Math.cos(theta) + this.y0;
|
||
|
|
||
|
p.x = x;
|
||
|
p.y = y;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
export function inverse(p) {
|
||
|
var rh1, qs, con, theta, lon, lat;
|
||
|
|
||
|
p.x -= this.x0;
|
||
|
p.y = this.rh - p.y + this.y0;
|
||
|
if (this.ns0 >= 0) {
|
||
|
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
con = 1;
|
||
|
}
|
||
|
else {
|
||
|
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
|
||
|
con = -1;
|
||
|
}
|
||
|
theta = 0;
|
||
|
if (rh1 !== 0) {
|
||
|
theta = Math.atan2(con * p.x, con * p.y);
|
||
|
}
|
||
|
con = rh1 * this.ns0 / this.a;
|
||
|
if (this.sphere) {
|
||
|
lat = Math.asin((this.c - con * con) / (2 * this.ns0));
|
||
|
}
|
||
|
else {
|
||
|
qs = (this.c - con * con) / this.ns0;
|
||
|
lat = this.phi1z(this.e3, qs);
|
||
|
}
|
||
|
|
||
|
lon = adjust_lon(theta / this.ns0 + this.long0);
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/* Function to compute phi1, the latitude for the inverse of the
|
||
|
Albers Conical Equal-Area projection.
|
||
|
-------------------------------------------*/
|
||
|
export function phi1z(eccent, qs) {
|
||
|
var sinphi, cosphi, con, com, dphi;
|
||
|
var phi = asinz(0.5 * qs);
|
||
|
if (eccent < EPSLN) {
|
||
|
return phi;
|
||
|
}
|
||
|
|
||
|
var eccnts = eccent * eccent;
|
||
|
for (var i = 1; i <= 25; i++) {
|
||
|
sinphi = Math.sin(phi);
|
||
|
cosphi = Math.cos(phi);
|
||
|
con = eccent * sinphi;
|
||
|
com = 1 - con * con;
|
||
|
dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
|
||
|
phi = phi + dphi;
|
||
|
if (Math.abs(dphi) <= 1e-7) {
|
||
|
return phi;
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
export var names = ["Albers_Conic_Equal_Area", "Albers", "aea"];
|
||
|
export default {
|
||
|
init: init,
|
||
|
forward: forward,
|
||
|
inverse: inverse,
|
||
|
names: names,
|
||
|
phi1z: phi1z
|
||
|
};
|