tethys-feature-service/node_modules/proj4/lib/projections/vandg.js

130 lines
3.1 KiB
JavaScript
Raw Permalink Normal View History

2023-10-02 13:04:02 +00:00
import adjust_lon from '../common/adjust_lon';
import {HALF_PI, EPSLN} from '../constants/values';
import asinz from '../common/asinz';
/* Initialize the Van Der Grinten projection
----------------------------------------*/
export function init() {
//this.R = 6370997; //Radius of earth
this.R = this.a;
}
export function forward(p) {
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
var x, y;
if (Math.abs(lat) <= EPSLN) {
x = this.x0 + this.R * dlon;
y = this.y0;
}
var theta = asinz(2 * Math.abs(lat / Math.PI));
if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
x = this.x0;
if (lat >= 0) {
y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
}
else {
y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
}
// return(OK);
}
var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
var asq = al * al;
var sinth = Math.sin(theta);
var costh = Math.cos(theta);
var g = costh / (sinth + costh - 1);
var gsq = g * g;
var m = g * (2 / sinth - 1);
var msq = m * m;
var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
if (dlon < 0) {
con = -con;
}
x = this.x0 + con;
//con = Math.abs(con / (Math.PI * this.R));
var q = asq + g;
con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
if (lat >= 0) {
//y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 + con;
}
else {
//y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 - con;
}
p.x = x;
p.y = y;
return p;
}
/* Van Der Grinten inverse equations--mapping x,y to lat/long
---------------------------------------------------------*/
export function inverse(p) {
var lon, lat;
var xx, yy, xys, c1, c2, c3;
var a1;
var m1;
var con;
var th1;
var d;
/* inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
con = Math.PI * this.R;
xx = p.x / con;
yy = p.y / con;
xys = xx * xx + yy * yy;
c1 = -Math.abs(yy) * (1 + xys);
c2 = c1 - 2 * yy * yy + xx * xx;
c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
a1 = (c1 - c2 * c2 / 3 / c3) / c3;
m1 = 2 * Math.sqrt(-a1 / 3);
con = ((3 * d) / a1) / m1;
if (Math.abs(con) > 1) {
if (con >= 0) {
con = 1;
}
else {
con = -1;
}
}
th1 = Math.acos(con) / 3;
if (p.y >= 0) {
lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
else {
lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
if (Math.abs(xx) < EPSLN) {
lon = this.long0;
}
else {
lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
}
p.x = lon;
p.y = lat;
return p;
}
export var names = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
export default {
init: init,
forward: forward,
inverse: inverse,
names: names
};