tethys-feature-service/node_modules/proj4/lib/projections/qsc.js

369 lines
11 KiB
JavaScript
Raw Permalink Normal View History

2023-10-02 13:04:02 +00:00
// QSC projection rewritten from the original PROJ4
// https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c
import {EPSLN, TWO_PI, SPI, HALF_PI, FORTPI} from '../constants/values';
/* constants */
var FACE_ENUM = {
FRONT: 1,
RIGHT: 2,
BACK: 3,
LEFT: 4,
TOP: 5,
BOTTOM: 6
};
var AREA_ENUM = {
AREA_0: 1,
AREA_1: 2,
AREA_2: 3,
AREA_3: 4
};
export function init() {
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.lat0 = this.lat0 || 0;
this.long0 = this.long0 || 0;
this.lat_ts = this.lat_ts || 0;
this.title = this.title || "Quadrilateralized Spherical Cube";
/* Determine the cube face from the center of projection. */
if (this.lat0 >= HALF_PI - FORTPI / 2.0) {
this.face = FACE_ENUM.TOP;
} else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) {
this.face = FACE_ENUM.BOTTOM;
} else if (Math.abs(this.long0) <= FORTPI) {
this.face = FACE_ENUM.FRONT;
} else if (Math.abs(this.long0) <= HALF_PI + FORTPI) {
this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT;
} else {
this.face = FACE_ENUM.BACK;
}
/* Fill in useful values for the ellipsoid <-> sphere shift
* described in [LK12]. */
if (this.es !== 0) {
this.one_minus_f = 1 - (this.a - this.b) / this.a;
this.one_minus_f_squared = this.one_minus_f * this.one_minus_f;
}
}
// QSC forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
export function forward(p) {
var xy = {x: 0, y: 0};
var lat, lon;
var theta, phi;
var t, mu;
/* nu; */
var area = {value: 0};
// move lon according to projection's lon
p.x -= this.long0;
/* Convert the geodetic latitude to a geocentric latitude.
* This corresponds to the shift from the ellipsoid to the sphere
* described in [LK12]. */
if (this.es !== 0) {//if (P->es != 0) {
lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y));
} else {
lat = p.y;
}
/* Convert the input lat, lon into theta, phi as used by QSC.
* This depends on the cube face and the area on it.
* For the top and bottom face, we can compute theta and phi
* directly from phi, lam. For the other faces, we must use
* unit sphere cartesian coordinates as an intermediate step. */
lon = p.x; //lon = lp.lam;
if (this.face === FACE_ENUM.TOP) {
phi = HALF_PI - lat;
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_0;
theta = lon - HALF_PI;
} else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_1;
theta = (lon > 0.0 ? lon - SPI : lon + SPI);
} else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) {
area.value = AREA_ENUM.AREA_2;
theta = lon + HALF_PI;
} else {
area.value = AREA_ENUM.AREA_3;
theta = lon;
}
} else if (this.face === FACE_ENUM.BOTTOM) {
phi = HALF_PI + lat;
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_0;
theta = -lon + HALF_PI;
} else if (lon < FORTPI && lon >= -FORTPI) {
area.value = AREA_ENUM.AREA_1;
theta = -lon;
} else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_2;
theta = -lon - HALF_PI;
} else {
area.value = AREA_ENUM.AREA_3;
theta = (lon > 0.0 ? -lon + SPI : -lon - SPI);
}
} else {
var q, r, s;
var sinlat, coslat;
var sinlon, coslon;
if (this.face === FACE_ENUM.RIGHT) {
lon = qsc_shift_lon_origin(lon, +HALF_PI);
} else if (this.face === FACE_ENUM.BACK) {
lon = qsc_shift_lon_origin(lon, +SPI);
} else if (this.face === FACE_ENUM.LEFT) {
lon = qsc_shift_lon_origin(lon, -HALF_PI);
}
sinlat = Math.sin(lat);
coslat = Math.cos(lat);
sinlon = Math.sin(lon);
coslon = Math.cos(lon);
q = coslat * coslon;
r = coslat * sinlon;
s = sinlat;
if (this.face === FACE_ENUM.FRONT) {
phi = Math.acos(q);
theta = qsc_fwd_equat_face_theta(phi, s, r, area);
} else if (this.face === FACE_ENUM.RIGHT) {
phi = Math.acos(r);
theta = qsc_fwd_equat_face_theta(phi, s, -q, area);
} else if (this.face === FACE_ENUM.BACK) {
phi = Math.acos(-q);
theta = qsc_fwd_equat_face_theta(phi, s, -r, area);
} else if (this.face === FACE_ENUM.LEFT) {
phi = Math.acos(-r);
theta = qsc_fwd_equat_face_theta(phi, s, q, area);
} else {
/* Impossible */
phi = theta = 0;
area.value = AREA_ENUM.AREA_0;
}
}
/* Compute mu and nu for the area of definition.
* For mu, see Eq. (3-21) in [OL76], but note the typos:
* compare with Eq. (3-14). For nu, see Eq. (3-38). */
mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI));
t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta)))));
/* Apply the result to the real area. */
if (area.value === AREA_ENUM.AREA_1) {
mu += HALF_PI;
} else if (area.value === AREA_ENUM.AREA_2) {
mu += SPI;
} else if (area.value === AREA_ENUM.AREA_3) {
mu += 1.5 * SPI;
}
/* Now compute x, y from mu and nu */
xy.x = t * Math.cos(mu);
xy.y = t * Math.sin(mu);
xy.x = xy.x * this.a + this.x0;
xy.y = xy.y * this.a + this.y0;
p.x = xy.x;
p.y = xy.y;
return p;
}
// QSC inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
export function inverse(p) {
var lp = {lam: 0, phi: 0};
var mu, nu, cosmu, tannu;
var tantheta, theta, cosphi, phi;
var t;
var area = {value: 0};
/* de-offset */
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
/* Convert the input x, y to the mu and nu angles as used by QSC.
* This depends on the area of the cube face. */
nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y));
mu = Math.atan2(p.y, p.x);
if (p.x >= 0.0 && p.x >= Math.abs(p.y)) {
area.value = AREA_ENUM.AREA_0;
} else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) {
area.value = AREA_ENUM.AREA_1;
mu -= HALF_PI;
} else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) {
area.value = AREA_ENUM.AREA_2;
mu = (mu < 0.0 ? mu + SPI : mu - SPI);
} else {
area.value = AREA_ENUM.AREA_3;
mu += HALF_PI;
}
/* Compute phi and theta for the area of definition.
* The inverse projection is not described in the original paper, but some
* good hints can be found here (as of 2011-12-14):
* http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
* (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
t = (SPI / 12) * Math.tan(mu);
tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2)));
theta = Math.atan(tantheta);
cosmu = Math.cos(mu);
tannu = Math.tan(nu);
cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta))));
if (cosphi < -1) {
cosphi = -1;
} else if (cosphi > +1) {
cosphi = +1;
}
/* Apply the result to the real area on the cube face.
* For the top and bottom face, we can compute phi and lam directly.
* For the other faces, we must use unit sphere cartesian coordinates
* as an intermediate step. */
if (this.face === FACE_ENUM.TOP) {
phi = Math.acos(cosphi);
lp.phi = HALF_PI - phi;
if (area.value === AREA_ENUM.AREA_0) {
lp.lam = theta + HALF_PI;
} else if (area.value === AREA_ENUM.AREA_1) {
lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI);
} else if (area.value === AREA_ENUM.AREA_2) {
lp.lam = theta - HALF_PI;
} else /* area.value == AREA_ENUM.AREA_3 */ {
lp.lam = theta;
}
} else if (this.face === FACE_ENUM.BOTTOM) {
phi = Math.acos(cosphi);
lp.phi = phi - HALF_PI;
if (area.value === AREA_ENUM.AREA_0) {
lp.lam = -theta + HALF_PI;
} else if (area.value === AREA_ENUM.AREA_1) {
lp.lam = -theta;
} else if (area.value === AREA_ENUM.AREA_2) {
lp.lam = -theta - HALF_PI;
} else /* area.value == AREA_ENUM.AREA_3 */ {
lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI);
}
} else {
/* Compute phi and lam via cartesian unit sphere coordinates. */
var q, r, s;
q = cosphi;
t = q * q;
if (t >= 1) {
s = 0;
} else {
s = Math.sqrt(1 - t) * Math.sin(theta);
}
t += s * s;
if (t >= 1) {
r = 0;
} else {
r = Math.sqrt(1 - t);
}
/* Rotate q,r,s into the correct area. */
if (area.value === AREA_ENUM.AREA_1) {
t = r;
r = -s;
s = t;
} else if (area.value === AREA_ENUM.AREA_2) {
r = -r;
s = -s;
} else if (area.value === AREA_ENUM.AREA_3) {
t = r;
r = s;
s = -t;
}
/* Rotate q,r,s into the correct cube face. */
if (this.face === FACE_ENUM.RIGHT) {
t = q;
q = -r;
r = t;
} else if (this.face === FACE_ENUM.BACK) {
q = -q;
r = -r;
} else if (this.face === FACE_ENUM.LEFT) {
t = q;
q = r;
r = -t;
}
/* Now compute phi and lam from the unit sphere coordinates. */
lp.phi = Math.acos(-s) - HALF_PI;
lp.lam = Math.atan2(r, q);
if (this.face === FACE_ENUM.RIGHT) {
lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI);
} else if (this.face === FACE_ENUM.BACK) {
lp.lam = qsc_shift_lon_origin(lp.lam, -SPI);
} else if (this.face === FACE_ENUM.LEFT) {
lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI);
}
}
/* Apply the shift from the sphere to the ellipsoid as described
* in [LK12]. */
if (this.es !== 0) {
var invert_sign;
var tanphi, xa;
invert_sign = (lp.phi < 0 ? 1 : 0);
tanphi = Math.tan(lp.phi);
xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared);
lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa));
if (invert_sign) {
lp.phi = -lp.phi;
}
}
lp.lam += this.long0;
p.x = lp.lam;
p.y = lp.phi;
return p;
}
/* Helper function for forward projection: compute the theta angle
* and determine the area number. */
function qsc_fwd_equat_face_theta(phi, y, x, area) {
var theta;
if (phi < EPSLN) {
area.value = AREA_ENUM.AREA_0;
theta = 0.0;
} else {
theta = Math.atan2(y, x);
if (Math.abs(theta) <= FORTPI) {
area.value = AREA_ENUM.AREA_0;
} else if (theta > FORTPI && theta <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_1;
theta -= HALF_PI;
} else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_2;
theta = (theta >= 0.0 ? theta - SPI : theta + SPI);
} else {
area.value = AREA_ENUM.AREA_3;
theta += HALF_PI;
}
}
return theta;
}
/* Helper function: shift the longitude. */
function qsc_shift_lon_origin(lon, offset) {
var slon = lon + offset;
if (slon < -SPI) {
slon += TWO_PI;
} else if (slon > +SPI) {
slon -= TWO_PI;
}
return slon;
}
export var names = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"];
export default {
init: init,
forward: forward,
inverse: inverse,
names: names
};