tethys-feature-service/node_modules/proj4/lib/projections/gnom.js

105 lines
2.7 KiB
JavaScript
Raw Permalink Normal View History

2023-10-02 13:04:02 +00:00
import adjust_lon from '../common/adjust_lon';
import asinz from '../common/asinz';
import {EPSLN} from '../constants/values';
/*
reference:
Wolfram Mathworld "Gnomonic Projection"
http://mathworld.wolfram.com/GnomonicProjection.html
Accessed: 12th November 2009
*/
export function init() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.sin_p14 = Math.sin(this.lat0);
this.cos_p14 = Math.cos(this.lat0);
// Approximation for projecting points to the horizon (infinity)
this.infinity_dist = 1000 * this.a;
this.rc = 1;
}
/* Gnomonic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
export function forward(p) {
var sinphi, cosphi; /* sin and cos value */
var dlon; /* delta longitude value */
var coslon; /* cos of longitude */
var ksp; /* scale factor */
var g;
var x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
dlon = adjust_lon(lon - this.long0);
sinphi = Math.sin(lat);
cosphi = Math.cos(lat);
coslon = Math.cos(dlon);
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
ksp = 1;
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
}
else {
// Point is in the opposing hemisphere and is unprojectable
// We still need to return a reasonable point, so we project
// to infinity, on a bearing
// equivalent to the northern hemisphere equivalent
// This is a reasonable approximation for short shapes and lines that
// straddle the horizon.
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
}
p.x = x;
p.y = y;
return p;
}
export function inverse(p) {
var rh; /* Rho */
var sinc, cosc;
var c;
var lon, lat;
/* Inverse equations
-----------------*/
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
p.x /= this.k0;
p.y /= this.k0;
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
c = Math.atan2(rh, this.rc);
sinc = Math.sin(c);
cosc = Math.cos(c);
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
lon = adjust_lon(this.long0 + lon);
}
else {
lat = this.phic0;
lon = 0;
}
p.x = lon;
p.y = lat;
return p;
}
export var names = ["gnom"];
export default {
init: init,
forward: forward,
inverse: inverse,
names: names
};