105 lines
2.7 KiB
JavaScript
105 lines
2.7 KiB
JavaScript
|
import adjust_lon from '../common/adjust_lon';
|
||
|
import asinz from '../common/asinz';
|
||
|
import {EPSLN} from '../constants/values';
|
||
|
|
||
|
/*
|
||
|
reference:
|
||
|
Wolfram Mathworld "Gnomonic Projection"
|
||
|
http://mathworld.wolfram.com/GnomonicProjection.html
|
||
|
Accessed: 12th November 2009
|
||
|
*/
|
||
|
export function init() {
|
||
|
|
||
|
/* Place parameters in static storage for common use
|
||
|
-------------------------------------------------*/
|
||
|
this.sin_p14 = Math.sin(this.lat0);
|
||
|
this.cos_p14 = Math.cos(this.lat0);
|
||
|
// Approximation for projecting points to the horizon (infinity)
|
||
|
this.infinity_dist = 1000 * this.a;
|
||
|
this.rc = 1;
|
||
|
}
|
||
|
|
||
|
/* Gnomonic forward equations--mapping lat,long to x,y
|
||
|
---------------------------------------------------*/
|
||
|
export function forward(p) {
|
||
|
var sinphi, cosphi; /* sin and cos value */
|
||
|
var dlon; /* delta longitude value */
|
||
|
var coslon; /* cos of longitude */
|
||
|
var ksp; /* scale factor */
|
||
|
var g;
|
||
|
var x, y;
|
||
|
var lon = p.x;
|
||
|
var lat = p.y;
|
||
|
/* Forward equations
|
||
|
-----------------*/
|
||
|
dlon = adjust_lon(lon - this.long0);
|
||
|
|
||
|
sinphi = Math.sin(lat);
|
||
|
cosphi = Math.cos(lat);
|
||
|
|
||
|
coslon = Math.cos(dlon);
|
||
|
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
|
||
|
ksp = 1;
|
||
|
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
|
||
|
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
|
||
|
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
// Point is in the opposing hemisphere and is unprojectable
|
||
|
// We still need to return a reasonable point, so we project
|
||
|
// to infinity, on a bearing
|
||
|
// equivalent to the northern hemisphere equivalent
|
||
|
// This is a reasonable approximation for short shapes and lines that
|
||
|
// straddle the horizon.
|
||
|
|
||
|
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
|
||
|
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
|
||
|
|
||
|
}
|
||
|
p.x = x;
|
||
|
p.y = y;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
export function inverse(p) {
|
||
|
var rh; /* Rho */
|
||
|
var sinc, cosc;
|
||
|
var c;
|
||
|
var lon, lat;
|
||
|
|
||
|
/* Inverse equations
|
||
|
-----------------*/
|
||
|
p.x = (p.x - this.x0) / this.a;
|
||
|
p.y = (p.y - this.y0) / this.a;
|
||
|
|
||
|
p.x /= this.k0;
|
||
|
p.y /= this.k0;
|
||
|
|
||
|
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
|
||
|
c = Math.atan2(rh, this.rc);
|
||
|
sinc = Math.sin(c);
|
||
|
cosc = Math.cos(c);
|
||
|
|
||
|
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
|
||
|
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
|
||
|
lon = adjust_lon(this.long0 + lon);
|
||
|
}
|
||
|
else {
|
||
|
lat = this.phic0;
|
||
|
lon = 0;
|
||
|
}
|
||
|
|
||
|
p.x = lon;
|
||
|
p.y = lat;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
export var names = ["gnom"];
|
||
|
export default {
|
||
|
init: init,
|
||
|
forward: forward,
|
||
|
inverse: inverse,
|
||
|
names: names
|
||
|
};
|