tethys-feature-service/node_modules/proj4/lib/projections/eqdc.js

118 lines
3.1 KiB
JavaScript
Raw Permalink Normal View History

2023-10-02 13:04:02 +00:00
import e0fn from '../common/e0fn';
import e1fn from '../common/e1fn';
import e2fn from '../common/e2fn';
import e3fn from '../common/e3fn';
import msfnz from '../common/msfnz';
import mlfn from '../common/mlfn';
import adjust_lon from '../common/adjust_lon';
import adjust_lat from '../common/adjust_lat';
import imlfn from '../common/imlfn';
import {EPSLN} from '../constants/values';
export function init() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
this.lat2 = this.lat2 || this.lat1;
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2);
this.e = Math.sqrt(this.es);
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.sinphi = Math.sin(this.lat1);
this.cosphi = Math.cos(this.lat1);
this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
this.ns = this.sinphi;
}
else {
this.sinphi = Math.sin(this.lat2);
this.cosphi = Math.cos(this.lat2);
this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
}
this.g = this.ml1 + this.ms1 / this.ns;
this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
this.rh = this.a * (this.g - this.ml0);
}
/* Equidistant Conic forward equations--mapping lat,long to x,y
-----------------------------------------------------------*/
export function forward(p) {
var lon = p.x;
var lat = p.y;
var rh1;
/* Forward equations
-----------------*/
if (this.sphere) {
rh1 = this.a * (this.g - lat);
}
else {
var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
rh1 = this.a * (this.g - ml);
}
var theta = this.ns * adjust_lon(lon - this.long0);
var x = this.x0 + rh1 * Math.sin(theta);
var y = this.y0 + this.rh - rh1 * Math.cos(theta);
p.x = x;
p.y = y;
return p;
}
/* Inverse equations
-----------------*/
export function inverse(p) {
p.x -= this.x0;
p.y = this.rh - p.y + this.y0;
var con, rh1, lat, lon;
if (this.ns >= 0) {
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
con = 1;
}
else {
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2(con * p.x, con * p.y);
}
if (this.sphere) {
lon = adjust_lon(this.long0 + theta / this.ns);
lat = adjust_lat(this.g - rh1 / this.a);
p.x = lon;
p.y = lat;
return p;
}
else {
var ml = this.g - rh1 / this.a;
lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
lon = adjust_lon(this.long0 + theta / this.ns);
p.x = lon;
p.y = lat;
return p;
}
}
export var names = ["Equidistant_Conic", "eqdc"];
export default {
init: init,
forward: forward,
inverse: inverse,
names: names
};